Python pickle 模块,_Unpickler() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用pickle._Unpickler()

项目:cws-tensorflow    作者:JayYip    | 项目源码 | 文件源码
def download_embedding():
    """
    Download files from web
    Seems cannot download by pgm
    Download from: https://sites.google.com/site/rmyeid/projects/polyglot

    Returns:
        A tuple (word, embedding). Emebddings shape is (100004, 64).
    """

    assert (tf.gfile.Exists(FLAGS.chr_embedding_dir)), (
        "Embedding pkl don't found, please \
        download the Chinese chr embedding from https://sites.google.com/site/rmyeid/projects/polyglot"
    )

    with open(FLAGS.chr_embedding_dir, 'rb') as f:
        u = pickle._Unpickler(f)
        u.encoding = 'latin1'
        p = u.load()

    return p
项目:PCANet    作者:IshitaTakeshi    | 项目源码 | 文件源码
def load_mnist():
    url = "http://deeplearning.net/data/mnist/mnist.pkl.gz"
    mnist_compressed = "mnist.pkl.gz"

    if not exists(mnist_compressed):
        print("Downloading MNIST")
        urlretrieve(url, mnist_compressed)

    # Load the dataset
    with gzip.open(mnist_compressed, "rb") as f:
        u = pickle._Unpickler(f)
        u.encoding = "latin1"
        data = u.load()

    data = [(X.reshape(-1, 28, 28), y) for X, y in data]
    return data
项目:NICE    作者:aidangomez    | 项目源码 | 文件源码
def get_dataset():
    f = gzip.open('mnist.pkl.gz', 'rb')
    u = pickle._Unpickler(f)
    u.encoding = 'latin1'
    train_set, valid_set, test_set = u.load()
    f.close()

    return train_set, valid_set, test_set
项目:Aurora    作者:upul    | 项目源码 | 文件源码
def _load_data(self):
        script_dir = os.path.dirname(__file__)
        mnist_file = os.path.join(os.path.join(script_dir, 'data'), 'mnist.pkl.gz')

        with gzip.open(mnist_file, 'rb') as mnist_file:
            u = pickle._Unpickler(mnist_file)
            u.encoding = 'latin1'
            train, val, test = u.load()
        return train, val, test
项目:FaceAnalysis    作者:ElliotSalisbury    | 项目源码 | 文件源码
def load(filename):
    with open(filename, "rb") as f:
        unpickler = pickle._Unpickler(f)
        while True:
            try:
                yield unpickler.load()
            except EOFError:
                break
项目:FaceAnalysis    作者:ElliotSalisbury    | 项目源码 | 文件源码
def load(filename):
    with open(filename, "rb") as f:
        unpickler = pickle._Unpickler(f)
        while True:
            try:
                yield unpickler.load()
            except EOFError:
                break
项目:Neural-Architecture-Search-with-RL    作者:dhruvramani    | 项目源码 | 文件源码
def load_data(self, file_name):
        with open(file_name, 'rb') as file:
            unpickler = pickle._Unpickler(file)
            unpickler.encoding = 'latin1'
            contents = unpickler.load()
            X, Y = np.asarray(contents['data'], dtype=np.float32), np.asarray(contents['labels'])
            one_hot = np.zeros((Y.size, Y.max() + 1))
            one_hot[np.arange(Y.size), Y] = 1
            return X, one_hot
项目:dsde-deep-learning    作者:broadinstitute    | 项目源码 | 文件源码
def load_data(dataset):
    ''' Loads the dataset
    :type dataset: string
    :param dataset: the path to the dataset (here MNIST)
    '''

    #############
    # LOAD DATA #
    #############

    # Download the MNIST dataset if it is not present
    data_dir, data_file = os.path.split(dataset)
    if data_dir == "" and not os.path.isfile(dataset):
        # Check if dataset is in the data directory.
        new_path = os.path.join(
            os.path.split(__file__)[0],
            "data",
            dataset
        )
        if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz':
            dataset = new_path

    if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz':
        import urllib
        origin = (
            'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
        )
        print('Downloading data from %s' % origin)
        urllib.urlretrieve(origin, dataset)

    print('loading data...')

    # Load the dataset
    f = gzip.open(dataset, 'rb')
    if sys.version_info[0] == 3:
        u = pickle._Unpickler(f)
        u.encoding = 'latin1'
        train_set, valid_set, test_set = u.load()
    else:
        train_set, valid_set, test_set = pickle.load(f)

    f.close()
    #train_set, valid_set, test_set format: tuple(input, target)
    #input is an numpy.ndarray of 2 dimensions (a matrix)
    #which row's correspond to an example. target is a
    #numpy.ndarray of 1 dimensions (vector)) that have the same length as
    #the number of rows in the input. It should give the target
    #target to the example with the same index in the input.

    return train_set, valid_set, test_set