我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用progressbar.ProgressBar()。
def prepare_inception_data(o_dir, i_dir): if not os.path.exists(o_dir): os.makedirs(o_dir) cnt = 0 bar = progressbar.ProgressBar(redirect_stdout=True, max_value=progressbar.UnknownLength) for root, subFolders, files in os.walk(i_dir): if files: for f in files: if 'jpg' in f: f_name = str(cnt) + '_ins.' + f.split('.')[-1] cnt += 1 file_dir = os.path.join(root, f) dest_path = os.path.join(o_dir, f) dest_new_name = os.path.join(o_dir, f_name) copy(file_dir, o_dir) os.rename(dest_path, dest_new_name) bar.update(cnt) bar.finish() print('Total number of files: {}'.format(cnt))
def load_images(o_dir, i_dir, n_images=3000, size=128): prepare_inception_data(o_dir, i_dir) image_list = [] done = False cnt = 0 bar = progressbar.ProgressBar(redirect_stdout=True, max_value=progressbar.UnknownLength) for root, dirs, files in os.walk(o_dir): if files: for f in files: cnt += 1 file_dir = os.path.join(root, f) image_list.append(ip.load_image_inception(file_dir, 0)) bar.update(cnt) if len(image_list) == n_images: done = True break if done: break bar.finish() print('Finished Loading Files') return image_list
def render(self, length=None, progress=False): """ Render this signal into an numpy array of floats. Return the array. :param length: The length to render, in seconds. Optional. :param progress: Whether to show a progress bar for rendering """ if progress and not progressbar: print('Install the progressbar module to see a progress bar for rendering') progress = False duration = self.duration if length is None else length * SAMPLE_RATE if duration == float('inf'): duration = 3*SAMPLE_RATE else: duration = int(duration) out = numpy.empty((duration, 1)) pbar = progressbar.ProgressBar(widgets=['Rendering: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()], maxval=duration-1).start() if progress else None for i in range(duration): out[i] = self.amplitude(i) if pbar: pbar.update(i) if pbar: pbar.finish() return out
def multi_core_scrape(num_pages, db_coll): ''' Map the API scrape across number of processors - 1 for performance boost. INPUT: num_pages: int, number of pages to scrape db_coll: pymongo collection object, collection to add documents to OUTPUT: None, records inserted into MongoDB ''' cpus = cpu_count() - 1 pool = Pool(processes=cpus) pages = range(1, num_pages + 1) employers = pool.map(scrape_api_page, pages) pool.close() pool.join() print 'Inserting Employer Records into MongoDB . . .' pbar = ProgressBar() for page in pbar(employers): db_coll.insert_many(page)
def main(): uri, outfile, dataset = get_arguments() fd = tempfile.NamedTemporaryFile() progress = ProgressBar(widgets=[Percentage(), ' ', Bar(), ' ', ETA(), ' ', FileTransferSpeed()]) def update(count, blockSize, totalSize): if progress.maxval is None: progress.maxval = totalSize progress.start() progress.update(min(count * blockSize, totalSize)) urllib.urlretrieve(uri, fd.name, reporthook = update) if dataset == 'zinc12': df = pandas.read_csv(fd.name, delimiter = '\t') df = df.rename(columns={'SMILES':'structure'}) df.to_hdf(outfile, 'table', format = 'table', data_columns = True) elif dataset == 'chembl22': df = pandas.read_table(fd.name,compression='gzip') df = df.rename(columns={'canonical_smiles':'structure'}) df.to_hdf(outfile, 'table', format = 'table', data_columns = True) pass else: df = pandas.read_csv(fd.name, delimiter = '\t') df.to_hdf(outfile, 'table', format = 'table', data_columns = True)
def main(): start = timer() files = get_file_names() smell_results = [] bar = progressbar.ProgressBar(max_value=len(files)) processed_files = 0 with concurrent.futures.ProcessPoolExecutor() as executor: for file, smell in zip(files, executor.map(worker, files)): smell_results = smell_results + smell processed_files += 1 bar.update(processed_files) smell_results = [x for x in smell_results if x] end = timer() print(end - start) dataminer = SmellDataMine() dataminer.save_to_database(smell_results)
def knn_masked_data(trX,trY,missing_data_dir, input_shape, k): raw_im_data = np.loadtxt(join(script_dir,missing_data_dir,'index.txt'),delimiter=' ',dtype=str) raw_mask_data = np.loadtxt(join(script_dir,missing_data_dir,'index_mask.txt'),delimiter=' ',dtype=str) # Using 'brute' method since we only want to do one query per classifier # so this will be quicker as it avoids overhead of creating a search tree knn_m = KNeighborsClassifier(algorithm='brute',n_neighbors=k) prob_Y_hat = np.zeros((raw_im_data.shape[0],int(np.max(trY)+1))) total_images = raw_im_data.shape[0] pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start() for i in range(total_images): mask_im=load_image(join(script_dir,missing_data_dir,raw_mask_data[i][0]), input_shape,1).reshape(np.prod(input_shape)) mask = np.logical_not(mask_im > eps) # since mask is 1 at missing locations v_im=load_image(join(script_dir,missing_data_dir,raw_im_data[i][0]), input_shape, 255).reshape(np.prod(input_shape)) rep_mask = np.tile(mask,(trX.shape[0],1)) # Corrupt whole training set according to the current mask corr_trX = np.multiply(trX, rep_mask) knn_m.fit(corr_trX, trY) prob_Y_hat[i,:] = knn_m.predict_proba(v_im.reshape(1,-1)) pbar.update(i) pbar.finish() return prob_Y_hat
def preprocess(self, questions: List[QASetting], answers: Optional[List[List[Answer]]] = None, is_eval: bool = False) -> List[XQAAnnotation]: if answers is None: answers = [None] * len(questions) preprocessed = [] if len(questions) > 1000: bar = progressbar.ProgressBar( max_value=len(questions), widgets=[' [', progressbar.Timer(), '] ', progressbar.Bar(), ' (', progressbar.ETA(), ') ']) for q, a in bar(zip(questions, answers)): preprocessed.append(self.preprocess_instance(q, a)) else: for q, a in zip(questions, answers): preprocessed.append(self.preprocess_instance(q, a)) return preprocessed
def preprocess(self, questions: List[QASetting], answers: Optional[List[List[Answer]]] = None, is_eval: bool = False) -> List[MCAnnotation]: if answers is None: answers = [None] * len(questions) preprocessed = [] if len(questions) > 1000: bar = progressbar.ProgressBar( max_value=len(questions), widgets=[' [', progressbar.Timer(), '] ', progressbar.Bar(), ' (', progressbar.ETA(), ') ']) for i, (q, a) in bar(enumerate(zip(questions, answers))): preprocessed.append(self.preprocess_instance(i, q, a)) else: for i, (q, a) in enumerate(zip(questions, answers)): preprocessed.append(self.preprocess_instance(i, q, a)) return preprocessed
def evaluate_network(self, ckpt): path = config.EVAL_DIR + '/Data/' self.filename = path + 'coco_%s_%s_%i.json' % (self.loader.split, args.run_name, ckpt) detections = [] filenames = self.loader.get_filenames() bar = progressbar.ProgressBar() for i in bar(range(len(filenames))): img_id = filenames[i] detections.extend(self.process_image(img_id, i)) with open(self.filename, 'w') as f: json.dump(detections, f) if args.segment: iou = self.compute_mean_iou() cocoEval = self.compute_ap() return self.compact_results(cocoEval.stats, ckpt)
def to_pairs(self, pairs): """Copies labels and scores from self to pairs matrix. Args: pairs (SimilarityMatrix): """ six.print_('copy labels', flush=True) self.build_label_cache() pairs.labels.update(self.cache_l2i) six.print_('copy matrix to pairs', flush=True) limit = self.scores.shape[0] bar = ProgressBar() for query_id in bar(six.moves.range(0, limit)): subjects = self.scores[query_id, ...] filled_subjects_ids = subjects.nonzero()[0] filled_subjects = [(query_id, i, subjects[i]) for i in filled_subjects_ids if query_id < i] if filled_subjects: pairs.pairs.table.append(filled_subjects)
def collect_mailids(server): folders = server.list_folders() #construct progressbar progressbar_widgets = [ '[Searching for mails on server] ', progressbar.Percentage(), progressbar.Bar(marker=progressbar.RotatingMarker()), ' '] progressbar_instance = progressbar.ProgressBar(widgets=progressbar_widgets, maxval=len(folders)).start() #collect all mailids for all folders folder_contents = {} folder_progress = 0 for flags, delimiter, folder in folders: #read all mailids for the folder server.select_folder(folder, readonly=True) folder_contents[folder] = server.search() #update progrssbar folder_progress += 1 progressbar_instance.update(folder_progress) progressbar_instance.finish() return folder_contents
def download(download_list, total_download_size): progressbar_widgets = [ '[Downloading mails ] ', progressbar.Percentage(), progressbar.Bar(marker=progressbar.RotatingMarker()), ' ', progressbar.ETA(), ' ', bitmath.integrations.BitmathFileTransferSpeed()] progressbar_instance = progressbar.ProgressBar(widgets=progressbar_widgets, maxval=int(total_download_size)).start() downloaded_size = bitmath.Byte(0) for folder, mails in download_list.items(): server.select_folder(folder, readonly=True) for mailid, mailfilename, mailsize in mails: #make parent directory if not os.path.isdir(os.path.dirname(mailfilename)): os.makedirs(os.path.dirname(mailfilename)) #download mail with open(mailfilename, 'wb') as mailfile: mailfile.write(server.fetch([mailid], ['RFC822'])[mailid][b'RFC822']) #update progressbar downloaded_size += mailsize progressbar_instance.update(int(downloaded_size)) progressbar_instance.finish()
def validate(test_data, test_labels, model, batchsize, silent, gpu): N_test = test_data.shape[0] pbar = ProgressBar(0, N_test) sum_accuracy = 0 sum_loss = 0 for i in range(0, N_test, batchsize): x_batch = test_data[i:i + batchsize] y_batch = test_labels[i:i + batchsize] if gpu >= 0: x_batch = cuda.to_gpu(x_batch.astype(np.float32)) y_batch = cuda.to_gpu(y_batch.astype(np.int32)) x = Variable(x_batch) t = Variable(y_batch) loss, acc = model(x, t, train=False) sum_loss += float(cuda.to_cpu(loss.data)) * y_batch.size sum_accuracy += float(cuda.to_cpu(acc.data)) * y_batch.size if not silent: pbar.update(i + y_batch.size) return sum_loss, sum_accuracy
def __filter_regions_by_class(self, regions): print("Filtering regions...") act_regions = [] region_sub = {} bar = progressbar.ProgressBar() for region in bar(regions): try: reg_obj = self.region_objects[region.image.id][region.id] reg_obj = frozenset([x.lower() for x in reg_obj]) except KeyError: reg_obj = frozenset({}) if reg_obj in self.obj_idx: act_regions.append(region) if region.image.id not in region_sub: region_sub[region.image.id] = {} reg_img = region_sub[region.image.id] global_region_img = self.region_objects[region.image.id] reg_img[region.id] = global_region_img[region.id] return act_regions, region_sub
def load_data(path): n_lines = count_lines(path) bar = progressbar.ProgressBar() train = [] test = [] print('loading...: %s' % path) with open(path) as f: i = 0 for line in bar(f, max_value=n_lines): words = line.strip().split() if i < 1000: test.append(np.array(words)) i+=1 else: train.append(np.array(words)) return train, test
def load_data(word_voc, char_voc, path): n_lines = count_lines(path) bar = progressbar.ProgressBar() data = [] print('loading...: %s' % path) with open(path) as f: for line in bar(f, max_value=n_lines): words = line.strip().split() ''' array = np.array([word_voc.get(w, UNK) for w in words], dtype=np.int32) unk_words = np.array(words)[array==UNK] unk_array = np.array([ np.array([char_voc.get(c, UNK) for c in list(w)], dtype=np.int32) for w in unk_words]) array = np.array([array, unk_array]) if len(unk_array)!=0: print(array) ''' data.append(np.array(words)) return data
def progressbarize(iterable, progress=False): """Construct progressbar for loops if progressbar requested, otherwise return directly iterable. :param iterable: iterable to use :param progress: True if print progressbar """ if progress: # The casting to list is due to possibly yielded value that prevents # ProgressBar to compute overall ETA return progressbar.ProgressBar(widgets=[ progressbar.Timer(), ', ', progressbar.Percentage(), ', ', progressbar.SimpleProgress(), ', ', progressbar.ETA() ])(list(iterable)) return iterable
def bruteforce(): import progressbar from time import sleep bar = progressbar.ProgressBar(maxval=60, \ widgets=[progressbar.Bar('==', '[', ']'), ' ', progressbar.Percentage()]) bar.start() for i in xrange(10): bar.update(i+1) sleep(0.05) wordlist = "/root/2fassassin/crack/wordlist/2fa-wordlist.txt" target = "/root/2fassassin/loot/*.pfx" sign = "" sign += "crackpkcs12 -v -b" sign += " " sign += target sign += "| tee crack.log" os.system(sign) bar.finish() sys.exit()
def bruteforce(): import progressbar from time import sleep bar = progressbar.ProgressBar(maxval=60, \ widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()]) bar.start() for i in xrange(10): bar.update(i+1) sleep(0.05) wordlist = "/root/2fassassin/crack/wordlist/2fa-wordlist.txt" target = "/root/2fassassin/loot/*.pfx" sign = "" sign += "crackpkcs12 -v -b" sign += " " sign += target sign += "| tee crack.log" os.system(sign) bar.finish() sys.exit()
def __init__(self, n_estimators, learning_rate, min_samples_split, min_impurity, max_depth, regression): self.n_estimators = n_estimators self.learning_rate = learning_rate self.min_samples_split = min_samples_split self.min_impurity = min_impurity self.max_depth = max_depth self.regression = regression self.bar = progressbar.ProgressBar(widgets=bar_widgets) # Square loss for regression # Log loss for classification self.loss = SquareLoss() if not self.regression: self.loss = CrossEntropy() # Initialize regression trees self.trees = [] for _ in range(n_estimators): tree = RegressionTree( min_samples_split=self.min_samples_split, min_impurity=min_impurity, max_depth=self.max_depth) self.trees.append(tree)
def __init__(self, n_estimators=100, max_features=None, min_samples_split=2, min_gain=0, max_depth=float("inf")): self.n_estimators = n_estimators # Number of trees self.max_features = max_features # Maxmimum number of features per tree self.min_samples_split = min_samples_split self.min_gain = min_gain # Minimum information gain req. to continue self.max_depth = max_depth # Maximum depth for tree self.progressbar = progressbar.ProgressBar(widgets=bar_widgets) # Initialize decision trees self.trees = [] for _ in range(n_estimators): self.trees.append( ClassificationTree( min_samples_split=self.min_samples_split, min_impurity=min_gain, max_depth=self.max_depth))
def precompute(db, dir): m = megatron.Megatron(db) m.database.drop_all() m.database.create_database() importer = import_book.BookImporter(m) progress = progressbar.ProgressBar() importer.import_from(dir, progress) counting_worker.run(m) tfidf = tf_idf.TFIDF(m) tfidf.compute_idf() tfidf.compute_tfidf() tfidf.compute_top_words()
def assembly(overlap_length, percent_identity, threads, wd, verbose): """ """ manage = Manager() queue = manage.Queue() pool = Pool(processes=int(threads), maxtasksperchild=10) new_commands = [] for root, dirs, file in os.walk(wd): for fasta_file in file: complete_data = (fasta_file, percent_identity, overlap_length, wd, verbose, queue) new_commands.append(complete_data) results = pool.map_async(iAssembler, new_commands) with progressbar.ProgressBar(max_value=len(new_commands)) as bar: while not results.ready(): size = queue.qsize() bar.update(size) time.sleep(1)
def __load_embeding_model(self, file_path, max_vocab_size=100000): self.__embed_vectors = dict() if not file_path: print('Embeddings file not provided') return if not os.path.exists(file_path): print('Embeddings file not found:', file_path) return print('Loading the embedding model from:', file_path) bar = progressbar.ProgressBar(max_value=max_vocab_size) with open(file_path, "r") as embed_f: for line in embed_f: try: tab = line.rstrip().split() word = tab[0].lower() if not word in self.__embed_vectors: vec = numpy.array(tab[1:], dtype=float) self.__embed_vectors[word] = vec except ValueError: continue bar.update(len(self.__embed_vectors)) if len(self.__embed_vectors) == max_vocab_size: bar.finish() return
def Steg_brute(ifile, dicc): i = 0 ofile = ifile.split('.')[0] + "_flag.txt" nlines = len(open(dicc).readlines()) with open(dicc, 'r') as passFile: pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=nlines).start() for line in passFile.readlines(): password = line.strip('\n') r = commands.getoutput("steghide extract -sf %s -p '%s' -xf %s" % (ifile, password, ofile)) if not "no pude extraer" in r and not "could not extract" in r: print(color.GREEN + "\n\n " + r + color.ENDC) print("\n\n [+] " + color.INFO + "Information obtained with password:" + color.GREEN + " %s\n" % password + color.ENDC) if check_file(ofile): with open(ofile, 'r') as outfile: for line in outfile.readlines(): print(line) break pbar.update(i + 1) i += 1
def emit(self, record): import progressbar as pb msg = json.loads(record.msg) # print(msg) if msg[0] == 'SET': pass self.pbar.update(msg[1]) elif msg[0] == 'START': print(msg[1] + ':', file=sys.stderr) self.pbar = pb.ProgressBar(maxval=msg[2], **self.pbar_args) self.pbar.start() elif msg[0] == 'DONE': self.pbar.finish() del self.pbar print('', file=sys.stderr)
def progress_bar(n): import progressbar return progressbar.ProgressBar( max_value=n, widgets=[ progressxbar.Percentage(), ' ', '(', progressbar.SimpleProgress(), ')', ' ', progressbar.Bar(), ' ', progressbar.AdaptiveETA(), ]) # http://code.activestate.com/recipes/577058/
def sub(self, msg=None, **kwargs): """Creates a new progress bar for tracking a sub-process. Parameters ---------- msg : str, optional Description of sub-process """ if self.sub_bar is not None and self.sub_bar.finished is False: self.sub_bar.finish() self.sub_bar = ProgressBar( present="%s: %s" % (self.present, msg) if msg else self.present, **kwargs) self.sub_bar.finish = partial(self.sub_bar.finish, end="\r") return self.sub_bar
def deleteHostsByHostgroup(groupname): hostgroup = zapi.hostgroup.get(output=['groupid'],filter={'name': groupname}) if hostgroup.__len__() != 1: logger.error('Hostgroup not found: %s\n\tFound this: %s' % (groupname,hostgroup)) groupid = int(hostgroup[0]['groupid']) hosts = zapi.host.get(output=['name','hostid'],groupids=groupid) total = len(hosts) logger.info('Hosts found: %d' % (total)) if ( args.run ): x = 0 bar = ProgressBar(maxval=total,widgets=[Percentage(), ReverseBar(), ETA(), RotatingMarker(), Timer()]).start() logger.echo = False for host in hosts: x = x + 1 bar.update(x) logger.debug('(%d/%d) >> Removing >> %s' % (x, total, host)) out = zapi.globo.deleteMonitors(host['name']) bar.finish() logger.echo = True else: logger.info('No host removed due to --no-run arg. Full list of hosts:') for host in hosts: logger.info('%s' % host['name']) return
def hosts_disable_all(): """ status de host 0 = enabled status de host 1 = disabled """ logger.info('Disabling all hosts, in blocks of 1000') hosts = zapi.host.get(output=[ 'hostid' ], search={ 'status': 0 }) maxval = int(ceil(hosts.__len__())/1000+1) bar = ProgressBar(maxval=maxval,widgets=[Percentage(), ReverseBar(), ETA(), RotatingMarker(), Timer()]).start() i = 0 for i in xrange(maxval): block = hosts[:1000] del hosts[:1000] result = zapi.host.massupdate(hosts=[ x for x in block ], status=1) i += 1 bar.update(i) bar.finish() logger.info('Done') return
def proxy_passive_to_active(): """ status de prxy 5 = active status de prxy 6 = passive """ logger.info('Change all proxys to active') proxys = zapi.proxy.get(output=[ 'shorten', 'host' ], filter={ 'status': 6 }) if ( proxys.__len__() == 0 ): logger.info('Done') return bar = ProgressBar(maxval=proxys.__len__(),widgets=[Percentage(), ReverseBar(), ETA(), RotatingMarker(), Timer()]).start() i = 0 for x in proxys: i += 1 proxyid = x['proxyid'] result = zapi.proxy.update(proxyid=proxyid, status=5) logger.echo = False logger.debug('Changed from passive to active proxy: %s' % (x['host'])) bar.update(i) bar.finish() logger.echo = True logger.info('Done') return
def _parse(self, xml_file): self.xml_file = xml_file self.key_count = 0 if not self.suppliers: self.suppliers = IceCatSupplierMapping(log=self.log, auth=self.auth, data_dir=self.data_dir) if not self.categories: self.categories = IceCatCategoryMapping(log=self.log, data_dir=self.data_dir, auth=self.auth) print("Parsing products from index file:", xml_file) with progressbar.ProgressBar(max_value=progressbar.UnknownLength) as self.bar: with open(self.xml_file, 'rb') as f: self.o = xmltodict.parse(f, attr_prefix='', postprocessor=self._postprocessor, namespace_separator='', process_namespaces=True, namespaces=self._namespaces) f.closed # peel down to file key self.o = self.o['icecat-interface']['files.index']['file'] self.log.info("Parsed {} products from IceCat catalog".format(str(len(self.o)))) return len(self.o)
def load(self, table): cache = {} def save(row): (query, values) = self.get_insert(row, table) try: prepared = cache[query] except: prepared = self.session.prepare(query) cache[query] = prepared bound = prepared.bind(values) self.session.execute(bound) pool = Pool(100) i = 0 print "Loading {}".format(table) with ProgressBar(max_value=len(self.dataframe)) as p: for _ in pool.imap_unordered(save, self.iter()): i += 1 if i % 10 == 0: p.update(i)
def train(self, epochs, batch_size, learning_rate, save_to=None): self.train_step = pt.apply_optimizer(tf.train.AdamOptimizer(learning_rate, epsilon=1), losses = [self.error_function]) init = tf.initialize_all_variables() self.sess.run(init) pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=epochs).start() while self.get_epoch() < epochs: input_data = self.hdf5reader.next() _, loss_value = self.sess.run( [self.train_step, self.error_function], { self.encoder.input_data: input_data } ) pbar.update(self.get_epoch()) pbar.finish()
def images_to_hdf5(dir_path, output_hdf5, size = (112,112), channels = 3, resize_to = None): files = sorted(os.listdir(dir_path)) nr_of_images = len(files) if resize_to: size = resize_to i = 0 pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=nr_of_images).start() data = np.empty(shape=(nr_of_images, size[0], size[1], channels), dtype=np.uint8) for f in files: datum = imread(dir_path + '/' + f) if resize_to: datum = np.asarray(Image.fromarray((datum), 'RGB').resize((size[0],size[1]), PIL.Image.ANTIALIAS)) data[i,:,:,:] = datum i = i + 1 pbar.update(i) pbar.finish() with h5py.File(output_hdf5, 'w') as hf: hf.create_dataset('data', data=data)
def identify_many(scenes): """ return metadata handlers of all valid scenes in a list, similar to function identify prints a progressbar :param scenes: a list of file names :return: a list of pyroSAR metadata handlers """ idlist = [] pbar = pb.ProgressBar(maxval=len(scenes)).start() for i, scene in enumerate(scenes): if isinstance(scene, ID): idlist.append(scene) else: try: id = identify(scene) idlist.append(id) except IOError: continue pbar.update(i + 1) pbar.finish() return idlist
def test(location): """Test with a single bar. Input: location - tuple (x, y) defining the position on the screen of the progress bar """ # fd is an object that has a .write() method writer = Writer(location) pbar = ProgressBar(fd=writer) # progressbar usage pbar.start() for i in range(100): # do stuff # time taken for process is function of line number # t_wait = location[1] / 100 # time take is random t_wait = random.random() / 50 time.sleep(t_wait) # update calls the write method pbar.update(i) pbar.finish()
def test_bars(locations): """Test with multiple bars. Input: locations - a list of location (x, y) tuples """ writers = [Writer(loc) for loc in locations] pbars = [ProgressBar(fd=writer) for writer in writers] for pbar in pbars: pbar.start() for i in range(100): time.sleep(0.01) for pbar in pbars: pbar.update(i) for pbar in pbars: pbar.finish()
def do(): system_calls = {} p = progressbar.ProgressBar(maxval=500).start() for index, line in enumerate(open('unistd.h', 'r').readlines()): # print repr(line.strip()) try: if '(' in line: p.update(index) num = re.search('\((.*)\)', line).group(1) num = int(eval(num)) func_name = line.split('(')[0].strip() system_calls[num] = [func_name] system_calls[num].extend(get_system_call(func_name)) # print system_calls[num][1] except Exception as e: print index, line, e.message p.finish() open('system_calls', 'w').write(zlib.compress(pickle.dumps(system_calls)))
def load_corpus(self, corenlpserver, process=True): """ Use the PubMed web services to retrieve the title and abstract of each PMID :param corenlpserver: :param process: :return: """ time_per_abs = [] widgets = [pb.Percentage(), ' ', pb.Bar(), ' ', pb.AdaptiveETA(), ' ', pb.Timer()] pbar = pb.ProgressBar(widgets=widgets, maxval=len(self.pmids), redirect_stdout=True).start() for i, pmid in enumerate(self.pmids): t = time.time() newdoc = PubmedDocument(pmid) if newdoc.abstract == "": logging.info("ignored {} due to the fact that no abstract was found".format(pmid)) continue newdoc.process_document(corenlpserver, "biomedical") self.documents["PMID" + pmid] = newdoc abs_time = time.time() - t time_per_abs.append(abs_time) pbar.update(i+1) pbar.finish() abs_avg = sum(time_per_abs)*1.0/len(time_per_abs) logging.info("average time per abstract: %ss" % abs_avg)
def run_random_search(search): #Create progressbar to show how many searches have been done, removing eta search.progressbar = ProgressBar(1) search.progressbar.fmt = '''%(percent)3d%% %(bar)s %(current)s/%(total_items)s %(items_per_sec)s Run time: %(run_time)s''' buckets_found = get_buckets_found(search.output_file) #Get all public butets that have been found so far search.buckets_found = get_buckets_found(search.output_file) #Create a string generator search.string_generator = createStringGenerator(search) my_queue = Queue.Queue() for i in range(search.threads): t = threading.Thread(target=search_instance, args=(search, )) my_queue.put(t) #Run all of the threads while not my_queue.empty(): my_queue.get().start()
def run(path, quiet=False): """ Downloads all available hash files to a given path. :param path: Path to download directory :param quiet: If set to True, no progressbar is displayed """ if os.path.isdir(path): session = requests.Session() session.headers = {'User-agent': 'Mozilla/5.0 Chrome/57.0.2987.110'} max_num = max(list(map(int, re.sub(r'[\<\>]', '', '\n'.join(re.findall(r'\>[1-9][0-9]{2}\<', session.get('https://virusshare.com/hashes.4n6').text ) ) ).split('\n') ) ) ) if not quiet: p = progressbar.ProgressBar(max_value=max_num) for i in range(max_num): filename = str(i).zfill(3) + '.md5' if os.path.exists(os.path.join(path, filename)): continue if not quiet: p.update(i) url = URL + filename head = session.head(url) if head.status_code == 200: body = session.get(url, stream=True) with io.open(os.path.join(path, str(i).zfill(3) + '.md5'), mode='wb') as afile: for chunk in body.iter_content(chunk_size=1024): afile.write(b'' + chunk) body.close() else: print('Given path is not a directory.') sys.exit(1)
def main(): print('Looking for latest release') response = requests.get(RELEASES_URL) if(response.ok): release = json.loads(response.text) print('Found latest release with version {0}'.format(release['tag_name'])) if(len(release['assets']) > 0): downloadableAssetIndex = -1 for index,asset in enumerate(release['assets']): if(asset['name'][0:5] == 'build' and downloadableAssetIndex == -1): downloadableAssetIndex = index if(downloadableAssetIndex == -1): print('Could not find downloadable release build, aborting') else: print('Found downloadable build with name {0}'.format(release['assets'][downloadableAssetIndex]['name'])) print('Downloading latest client release with version {0}'.format(release['tag_name'])) buildDownloadUrl = release['assets'][downloadableAssetIndex]['browser_download_url'] buildFileName = release['assets'][downloadableAssetIndex]['name'] r = requests.get(buildDownloadUrl, stream=True) # bar = progressbar.ProgressBar(max_value=len(r.content)) with progressbar.ProgressBar(max_value=len(r.content)) as bar: deleteContentsOfFolder(DOWNLOAD_FOLDER) with open(join(DOWNLOAD_FOLDER,buildFileName), 'wb') as file: for chunk in r.iter_content(chunk_size=1024): bar.update(len(chunk)) file.write(chunk) print('Download finished') deleteContentsOfFolder(DESTINATION_FOLDER) with zipfile.ZipFile(join(DOWNLOAD_FOLDER,buildFileName), 'r') as zip: print('Extracting downloaded file into {0}'.format(DESTINATION_FOLDER)) zip.extractall(DESTINATION_FOLDER) print('Finished') return True else: print('Could not get info about latest release') return False
def run(args): if args.download: resolvers = download_resolvers() else: resolvers = load_resolvers(args.resolvers) random.shuffle(resolvers) pool = gevent.pool.Pool(args.concurrency) bar = progressbar.ProgressBar(redirect_stdout=True, redirect_stderr=True) for resolver in bar(resolvers): pool.add(gevent.spawn(check_resolver, args, resolver)) pool.join()
def __init__(self, options): self.wildcards = [] self.options = options self.domains = [] if options.domains: self.domains += filter(None, options.domains.read().split("\n")) self.domains += options.domain self.domains = list(set(self.domains)) random.shuffle(self.domains) self.resolvers = map(str.strip, filter(None, options.resolvers.read().split("\n"))) random.shuffle(self.resolvers) self.names = [X for X in self._load_names(options.names)] if options.progress: self.progress = progressbar.ProgressBar( redirect_stdout=True, redirect_stderr=True, widgets=[ progressbar.Percentage(), progressbar.Bar(), ' (', progressbar.ETA(), ') ', ]) else: self.progress = None self.finished = 0 LOG.info("%d names, %d resolvers, %d domains", len(self.names), len(self.resolvers), len(self.domains))
def compute_embeddings(images): """Runs inference on an image. Args: image: Image file names. Returns: Dict mapping image file name to embedding. """ # Creates graph from saved GraphDef. create_graph() filename_to_emb = {} config = tf.ConfigProto(device_count = {'GPU': 0}) bar = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()]) with tf.Session(config=config) as sess: i = 0 for image in bar(images): if not tf.gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = tf.gfile.FastGFile(image, 'rb').read() # Some useful tensors: # 'softmax:0': A tensor containing the normalized prediction across # 1000 labels. # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 # float description of the image. # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG # encoding of the image. # Runs the softmax tensor by feeding the image_data as input to the graph. softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') embedding_tensor = sess.graph.get_tensor_by_name('pool_3:0') embedding = sess.run(embedding_tensor, {'DecodeJpeg/contents:0': image_data}) filename_to_emb[image] = embedding.reshape(2048) i += 1 # print(image, i, len(images)) return filename_to_emb # temp_dir is a subdir of temp
def main(project_id, video_basename, sampling_rate=3): # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' # or any {'0', '1', '2'} video_name = video_basename[:video_basename.index('.')] # extract video frames extracted_frame_dir = os.path.join('temp', project_id, video_name, 'frames') mkdir_p(extracted_frame_dir) if not os.path.isdir(extracted_frame_dir): os.mkdir(extracted_frame_dir) video_path = os.path.join('videos', project_id, video_basename) vidcap = cv2.VideoCapture(video_path) print('Extracting video frames...') bar = progressbar.ProgressBar(maxval=101, widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()]) bar.start() fps = vidcap.get(CV_CAP_PROP_FPS)# TODO fps = fps if fps != float('nan') else 25 print 'actual fps', fps, 'sampling rate', sampling_rate success, image = vidcap.read() frames_to_extract = range(0, int(vidcap.get(CV_CAP_PROP_FRAME_COUNT)), int(round(fps / sampling_rate))) frame_count = len(frames_to_extract) for frame_pos in bar(frames_to_extract): vidcap.set(CV_CAP_PROP_POS_FRAMES, frame_pos) success, image = vidcap.read() # print('Read a new frame: %f ms'% vidcap.get(CV_CAP_PROP_POS_MSEC), success) cv2.imwrite(os.path.join(extracted_frame_dir, "%09d.jpg" % vidcap.get(CV_CAP_PROP_POS_MSEC)), image) # TODO (might still work) bar.finish()
def download(number, save_dir='./'): """Download pre-trained word vector :param number: integer, default ``None`` :param save_dir: str, default './' :return: file path for downloaded file """ df = load_datasets() row = df.iloc[[number]] url = ''.join(row.URL) if not url: print('The word vector you specified was not found. Please specify correct name.') widgets = ['Test: ', Percentage(), ' ', Bar(marker=RotatingMarker()), ' ', ETA(), ' ', FileTransferSpeed()] pbar = ProgressBar(widgets=widgets) def dlProgress(count, blockSize, totalSize): if pbar.max_value is None: pbar.max_value = totalSize pbar.start() pbar.update(min(count * blockSize, totalSize)) file_name = url.split('/')[-1] if not os.path.exists(save_dir): os.makedirs(save_dir) save_path = os.path.join(save_dir, file_name) path, _ = urlretrieve(url, save_path, reporthook=dlProgress) pbar.finish() return path
def __enter__(self): self.bar = progressbar.ProgressBar( widgets=[ progressbar.Percentage(), ' ', progressbar.Bar(), progressbar.FileTransferSpeed(), ' ', progressbar.ETA(), ], max_value=self.max_value, ) self.fd = open(self.output_path, 'wb') return self