Python scipy.misc 模块,imread() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用scipy.misc.imread()

项目:lyricswordcloud    作者:qwertyyb    | 项目源码 | 文件源码
def showData(self):
    print('???,????···')
    mask = imread(self.picfile)
    imgcolor = ImageColorGenerator(mask)
    wcc = WordCloud(font_path='./msyhl.ttc', 
    mask=mask, background_color='white', 
    max_font_size=200, 
    max_words=300,
    color_func=imgcolor
    )
    wc = wcc.generate_from_frequencies(self.data)
    plt.figure()
    plt.imshow(wc)
    plt.axis('off')
    print('?????')
    plt.show()
项目:visual-search    作者:GYXie    | 项目源码 | 文件源码
def main():
    args.input_data_dir = os.path.abspath(args.input_data_dir)
    if not os.path.exists(args.output_data_dir):
        os.mkdir(args.output_data_dir)
    for dir_path, dir_names, file_names in os.walk(args.input_data_dir):
        if len(file_names) > 0:
            print(dir_path)
            rows = int(math.ceil(len(file_names) / 6.0))
            print(rows)
            fig, axes = plt.subplots(4, 12, subplot_kw={'xticks': [], 'yticks': []})
            fig.subplots_adjust(hspace=0.01, wspace=0.01)
            for ax, file_name in zip(axes.flat, file_names):
                print(file_name)
                img = imread(dir_path + '/' + file_name)
                ax.imshow(img)
                # ax.set_title(os.path.splitext(file_name)[0].replace('.227x227', ''))
            plt.savefig(args.output_data_dir + dir_path.replace(args.input_data_dir, '') + '.pdf')
项目:pytorch-semseg    作者:meetshah1995    | 项目源码 | 文件源码
def __getitem__(self, index):
        """__getitem__

        :param index:
        """
        img_path = self.files[self.split][index].rstrip()
        lbl_path = os.path.join(self.annotations_base, os.path.basename(img_path)[:-4] + '.png')

        img = m.imread(img_path)
        img = np.array(img, dtype=np.uint8)

        lbl = m.imread(lbl_path)
        lbl = np.array(lbl, dtype=np.uint8)

        if self.is_transform:
            img, lbl = self.transform(img, lbl)

        return img, lbl
项目:pytorch-semseg    作者:meetshah1995    | 项目源码 | 文件源码
def __getitem__(self, index):
        img_name = self.files[self.split][index]
        img_path = self.root + '/' + self.split + '/' + img_name
        lbl_path = self.root + '/' + self.split + 'annot/' + img_name

        img = m.imread(img_path)
        img = np.array(img, dtype=np.uint8)

        lbl = m.imread(lbl_path)
        lbl = np.array(lbl, dtype=np.int8)

        if self.augmentations is not None:
            img, lbl = self.augmentations(img, lbl)

        if self.is_transform:
            img, lbl = self.transform(img, lbl)

        return img, lbl
项目:pytorch-semseg    作者:meetshah1995    | 项目源码 | 文件源码
def __getitem__(self, index):
        """__getitem__

        :param index:
        """
        img_path = self.files[self.split][index].rstrip()
        lbl_path = os.path.join(self.annotations_base,
                                img_path.split(os.sep)[-2], 
                                os.path.basename(img_path)[:-15] + 'gtFine_labelIds.png')

        img = m.imread(img_path)
        img = np.array(img, dtype=np.uint8)

        lbl = m.imread(lbl_path)
        lbl = self.encode_segmap(np.array(lbl, dtype=np.uint8))

        if self.augmentations is not None:
            img, lbl = self.augmentations(img, lbl)

        if self.is_transform:
            img, lbl = self.transform(img, lbl)

        return img, lbl
项目:FCN_train    作者:315386775    | 项目源码 | 文件源码
def data_augmentation(image_files, dir):
    image_list = []
    new_file_name = dir
    save_dir = "xxx" + new_file_name

    for image_file in image_files:
        image_list.append(misc.imread(image_file))

    for image in image_list:
        x = img_to_array(image)  # this is a Numpy array with shape (3, 150, 150)
        x = x.reshape((1,) + x.shape)  # this is a Numpy array with shape (1, 3, 150, 150)
        i = 0
        for batch in datagen.flow(x, batch_size=1, save_to_dir=save_dir,
                                  save_prefix=dir, save_format='jpg'):
            i += 1
            if i > 99:
                break
    return image_list

# List all the files
项目:DeepWorks    作者:daigo0927    | 项目源码 | 文件源码
def get_image(filepath, image_target, image_size):

    img = imread(filepath).astype(np.float)
    h_origin, w_origin = img.shape[:2]

    if image_target > h_origin or image_target > w_origin:
        image_target = min(h_origin, w_origin)

    h_drop = int((h_origin - image_target)/2)    
    w_drop = int((w_origin - image_target)/2)

    if img.ndim == 2:
        img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3))

    img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :]

    img_resize = imresize(img_crop, [image_size, image_size])

    return np.array(img_resize)/127.5 - 1.
项目:WGAN_GP    作者:daigo0927    | 项目源码 | 文件源码
def get_image(filepath, image_target, image_size):

    img = imread(filepath).astype(np.float)
    h_origin, w_origin = img.shape[:2]

    if image_target > h_origin or image_target > w_origin:
        image_target = min(h_origin, w_origin)

    h_drop = int((h_origin - image_target)/2)    
    w_drop = int((w_origin - image_target)/2)

    if img.ndim == 2:
        img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3))

    img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :]

    img_resize = imresize(img_crop, [image_size, image_size])

    return np.array(img_resize)/127.5 - 1.
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def test():

    path_text_for = 'D171.png'    
    path_text_back ='D771.png'
    # image forground/background
    im_for = misc.imread(path_text_for)
    im_back = misc.imread(path_text_back)
    size = im_for.shape
    s = size[0]    # size of the image (squared matrix)
    # number of images
    nbr_ims = 10
    train = True
    # generating the images
    data,data_labels = generate_brodatz_texture(nbr_ims, s, im_back, im_for)
    if train: # train
        sio.savemat('../data/train.mat', dict([('x_train', data), ('y_train', data_labels)]))    
    else:     # test
        sio.savemat('../data/test.mat', dict([('x_test', data), ('y_test', data_labels)]) )
项目:BirdProject    作者:ZlodeiBaal    | 项目源码 | 文件源码
def PrepareDataList(BASE, length):
    List = []
    for M in range(0,min(length,len(BASE))):
        img, text = BASE[M]
        image = misc.imread(img,mode='RGB')
        #image = misc.imresize(image, [227, 227])
        r1 = []
        if isfile(text):
            f = open(text, 'r')
            s = f.readline()
            st = s.split(' ')
            for i in range(0,2):
                r1.append(int(st[i]))
            f.close()
        else: #If there are no txt file - "no bird situation"
            r1.append(0);
            r1.append(0);
        List.append([image,r1])
    return List

# Random test and train list
项目:learning-to-see-by-moving    作者:pulkitag    | 项目源码 | 文件源码
def resize_images(prms):
    seqNum = range(11)
    rawStr = ['rawLeftImFile', 'rawRightImFile']
    imStr  = ['leftImFile', 'rightImFile']
    num    = ku.get_num_images()
    for raw, new in zip(rawStr, imStr):
        for seq in seqNum:
            N = num[seq]
            print seq, N, raw, new
            rawNames = [prms['paths'][raw] % (seq,i) for i in range(N)]          
            newNames = [prms['paths'][new] % (seq,i) for i in range(N)]
            dirName = os.path.dirname(newNames[0])
            if not os.path.exists(dirName):
                os.makedirs(dirName)
            for rawIm, newIm in zip(rawNames, newNames):
                im = scm.imread(rawIm)
                im = scm.imresize(im, [256, 256])   
                scm.imsave(newIm, im)

##
# Save images as jpgs.
项目:learning-to-see-by-moving    作者:pulkitag    | 项目源码 | 文件源码
def save_as_jpg(prms):
    seqNum = range(11)
    rawStr = ['rawLeftImFile', 'rawRightImFile']
    imStr  = ['leftImFile', 'rightImFile']
    num    = ku.get_num_images()
    for raw, new in zip(rawStr, imStr):
        for seq in seqNum:
            N = num[seq]
            print seq, N, raw, new
            rawNames = [prms['paths'][raw] % (seq,i) for i in range(N)]          
            newNames = [prms['paths'][new] % (seq,i) for i in range(N)]
            dirName = os.path.dirname(newNames[0])
            if not os.path.exists(dirName):
                os.makedirs(dirName)
            for rawIm, newIm in zip(rawNames, newNames):
                im = scm.imread(rawIm)
                scm.imsave(newIm, im)

##
# Get the names of images
项目:metaqnn    作者:bowenbaker    | 项目源码 | 文件源码
def preprocess(image_dir, new_image_dir, preprocess_fn):

    image_paths = []
    labels = []

    if os.path.isdir(new_image_dir):
        rmtree(new_image_dir)
    os.makedirs(new_image_dir)

    classes = os.listdir(image_dir)

    for clas in classes:
        class_dir = os.path.join(image_dir, str(clas))
        new_class_dir = os.path.join(new_image_dir, str(clas))
        os.makedirs(new_class_dir)

        for image_name in os.listdir(class_dir):
            image = misc.imread(os.path.join(class_dir, image_name))
            image = preprocess_fn(image)
            misc.imsave(os.path.join(new_class_dir, image_name), image)
项目:DocumentSegmentation    作者:SeguinBe    | 项目源码 | 文件源码
def process_one(image_dir, page_dir, output_dir, basename, colormap, color_labels):
    image_filename = os.path.join(image_dir, "{}.jpg".format(basename))
    page_filename = os.path.join(page_dir, "{}.xml".format(basename))

    page = PAGE.parse_file(page_filename)
    text_lines = [tl for tr in page.text_regions for tl in tr.text_lines]
    graphic_regions = page.graphic_regions
    img = imread(image_filename, mode='RGB')

    gt = np.zeros_like(img[:, :, 0])
    mask1 = cv2.fillPoly(gt.copy(), [PAGE.Point.list_to_cv2poly(tl.coords)
                                     for tl in text_lines if 'comment' in tl.id], 1)
    mask2 = cv2.fillPoly(gt.copy(), [PAGE.Point.list_to_cv2poly(tl.coords)
                                     for tl in text_lines if not 'comment' in tl.id], 1)
    mask3 = cv2.fillPoly(gt.copy(), [PAGE.Point.list_to_cv2poly(tl.coords)
                                     for tl in graphic_regions], 1)
    arr = np.dstack([mask1, mask2, mask3])

    gt_img = convert_array_masks(arr, colormap, color_labels)
    save_and_resize(img, os.path.join(output_dir, 'images', '{}.jpg'.format(basename)))
    save_and_resize(gt_img, os.path.join(output_dir, 'labels', '{}.png'.format(basename)), nearest=True)
项目:Deep-Image-Matting    作者:Joker316701882    | 项目源码 | 文件源码
def load_data(batch_alpha_paths,batch_eps_paths,batch_BG_paths):

    batch_size = batch_alpha_paths.shape[0]
    train_batch = []
    images_without_mean_reduction = []
    for i in range(batch_size):

        alpha = misc.imread(batch_alpha_paths[i],'L').astype(np.float32)

        eps = misc.imread(batch_eps_paths[i]).astype(np.float32)

        BG = misc.imread(batch_BG_paths[i]).astype(np.float32)

        batch_i,raw_RGB = preprocessing_single(alpha, BG, eps,batch_alpha_paths[i]) 
        train_batch.append(batch_i)
        images_without_mean_reduction.append(raw_RGB)
    train_batch = np.stack(train_batch)
    return train_batch[:,:,:,:3],np.expand_dims(train_batch[:,:,:,3],3),np.expand_dims(train_batch[:,:,:,4],3),train_batch[:,:,:,5:8],train_batch[:,:,:,8:],images_without_mean_reduction
项目:Deep-Image-Matting    作者:Joker316701882    | 项目源码 | 文件源码
def load_alphamatting_data(test_alpha):
    rgb_path = os.path.join(test_alpha,'rgb')
    trimap_path = os.path.join(test_alpha,'trimap')
    alpha_path = os.path.join(test_alpha,'alpha')   
    images = os.listdir(trimap_path)
    test_num = len(images)
    all_shape = []
    rgb_batch = []
    tri_batch = []
    alp_batch = []
    for i in range(test_num):
        rgb = misc.imread(os.path.join(rgb_path,images[i]))
        trimap = misc.imread(os.path.join(trimap_path,images[i]),'L')
        alpha = misc.imread(os.path.join(alpha_path,images[i]),'L')/255.0
        all_shape.append(trimap.shape)
        rgb_batch.append(misc.imresize(rgb,[320,320,3])-g_mean)
        trimap = misc.imresize(trimap,[320,320],interp = 'nearest').astype(np.float32)
        tri_batch.append(np.expand_dims(trimap,2))
        alp_batch.append(alpha)
    return np.array(rgb_batch),np.array(tri_batch),np.array(alp_batch),all_shape,images
项目:Deep-Image-Matting    作者:Joker316701882    | 项目源码 | 文件源码
def load_validation_data(vali_root):
    alpha_dir = os.path.join(vali_root,'alpha')
    RGB_dir = os.path.join(vali_root,'RGB')
    images = os.listdir(alpha_dir)
    test_num = len(images)

    all_shape = []
    rgb_batch = []
    tri_batch = []
    alp_batch = []

    for i in range(test_num):
        rgb = misc.imread(os.path.join(RGB_dir,images[i]))
        alpha = misc.imread(os.path.join(alpha_dir,images[i]),'L') 
        trimap = generate_trimap(np.expand_dims(np.copy(alpha),2),np.expand_dims(alpha,2))[:,:,0]
        alpha = alpha / 255.0
        all_shape.append(trimap.shape)
        rgb_batch.append(misc.imresize(rgb,[320,320,3])-g_mean)
        trimap = misc.imresize(trimap,[320,320],interp = 'nearest').astype(np.float32)
        tri_batch.append(np.expand_dims(trimap,2))
        alp_batch.append(alpha)
    return np.array(rgb_batch),np.array(tri_batch),np.array(alp_batch),all_shape,images
项目:Deep-Image-Matting    作者:Joker316701882    | 项目源码 | 文件源码
def main(args):

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = args.gpu_fraction)
    with tf.Session(config=tf.ConfigProto(gpu_options = gpu_options)) as sess:
        saver = tf.train.import_meta_graph('./meta_graph/my-model.meta')
        saver.restore(sess,tf.train.latest_checkpoint('./model'))
        image_batch = tf.get_collection('image_batch')[0]
        GT_trimap = tf.get_collection('GT_trimap')[0]
        pred_mattes = tf.get_collection('pred_mattes')[0]

        rgb = misc.imread(args.rgb)
        alpha = misc.imread(args.alpha,'L')
        trimap = generate_trimap(np.expand_dims(np.copy(alpha),2),np.expand_dims(alpha,2))[:,:,0]
        origin_shape = alpha.shape
        rgb = np.expand_dims(misc.imresize(rgb.astype(np.uint8),[320,320,3]).astype(np.float32)-g_mean,0)
        trimap = np.expand_dims(np.expand_dims(misc.imresize(trimap.astype(np.uint8),[320,320],interp = 'nearest').astype(np.float32),2),0)

        feed_dict = {image_batch:rgb,GT_trimap:trimap}
        pred_alpha = sess.run(pred_mattes,feed_dict = feed_dict)
        final_alpha = misc.imresize(np.squeeze(pred_alpha),origin_shape)
        # misc.imshow(final_alpha)
        misc.imsave('./alpha.png',final_alpha)
项目:ColourNet    作者:raghavgupta0296    | 项目源码 | 文件源码
def chooose_ims(batch_size):
    global index
    I1 = np.ndarray(shape=[1,256,256,1])
    U1 = np.ndarray(shape=[1,256,256,1])
    V1 = np.ndarray(shape=[1,256,256,1])
    for i in range(batch_size):
        if index>=len(files):
            index=0
        image = im.imread("/dataImages/dataset/"+files[index],mode='RGB')
        image = image/255
        I, U, V = imManipulation.rgb2yuv(image)
        I = np.reshape(I, (1,256, 256,1))
        U = np.reshape(U, (1,256, 256,1))
        V = np.reshape(V, (1,256, 256,1))
        I1 = np.concatenate((I1,I),axis=0)
        U1 = np.concatenate((U1,U),axis=0)
        V1 = np.concatenate((V1,V),axis=0)
        index+=1
    I1 = I1[1:,:,:,:]
    U1 = U1[1:,:,:,:]
    V1 = V1[1:,:,:,:]
    return I1,U1,V1
项目:FCN-GoogLeNet    作者:DeepSegment    | 项目源码 | 文件源码
def _transform(self, filename, flag = False):
        if flag:
            image = np.array(Image.open(filename), dtype=np.uint8)
            image[image == 255] = 21
        else:
            image = misc.imread(filename)

        if self.__channels and len(image.shape) < 3:  # make sure images are of shape(h,w,3)
            image = np.array([image for i in range(3)])

        if self.image_options.get("resize", False) and self.image_options["resize"]:
            resize_size = int(self.image_options["resize_size"])
            resize_image = misc.imresize(image,
                                         [resize_size, resize_size], interp='nearest')
        else:
            resize_image = image

        return np.array(resize_image)
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def level_curves(fname, npoints = 200, smoothing = 10, level = 0.5) :
    "Loads regularly sampled curves from a .PNG image."
    # Find the contour lines
    img = misc.imread(fname, flatten = True) # Grayscale
    img = (img.T[:, ::-1])  / 255.
    img = gaussian_filter(img, smoothing, mode='nearest')
    lines = find_contours(img, level)

    # Compute the sampling ratio for every contour line
    lengths = np.array( [arclength(line) for line in lines] )
    points_per_line = np.ceil( npoints * lengths / np.sum(lengths) )

    # Interpolate accordingly
    points = [] ; connec = [] ; index_offset = 0
    for ppl, line in zip(points_per_line, lines) :
        (p, c) = resample(line, ppl)
        points.append(p)
        connec.append(c + index_offset)
        index_offset += len(p)

    size   = np.maximum(img.shape[0], img.shape[1])
    points = np.vstack(points) / size
    connec = np.vstack(connec)
    return Curve(points, connec)
# Pyplot Output =================================================================================
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def level_curves(fname, npoints = 200, smoothing = 10, level = 0.5) :
    "Loads regularly sampled curves from a .PNG image."
    # Find the contour lines
    img = misc.imread(fname, flatten = True) # Grayscale
    img = (img.T[:, ::-1])  / 255.
    img = gaussian_filter(img, smoothing, mode='nearest')
    lines = find_contours(img, level)

    # Compute the sampling ratio for every contour line
    lengths = np.array( [arclength(line) for line in lines] )
    points_per_line = np.ceil( npoints * lengths / np.sum(lengths) )

    # Interpolate accordingly
    points = [] ; connec = [] ; index_offset = 0
    for ppl, line in zip(points_per_line, lines) :
        (p, c) = resample(line, ppl)
        points.append(p)
        connec.append(c + index_offset)
        index_offset += len(p)

    size   = np.maximum(img.shape[0], img.shape[1])
    points = np.vstack(points) / size
    connec = np.vstack(connec)
    return Curve(points, connec)
# Pyplot Output =================================================================================
项目:icyface_api    作者:bupticybee    | 项目源码 | 文件源码
def test_recognize(args):
    imdetect = args.detect
    im1 = args.im1
    im2 = args.im2

    payload = {'img':file2base64(imdetect)}
    import numpy as np
    imarr = np.array(misc.imread(imdetect))
    r = requests.get("http://face.icybee.cn/face/face_detect", data=payload)
    print(json.loads(r.text)['boxes'][0])
    box = json.loads(r.text)['boxes'][0]
    box = [int(i) for  i in box]
    misc.imsave('sample.jpg',imarr[box[1]:box[3],box[0]:box[2],:],)

    payload = {
            'img1':file2base64(im1),
            'img2':file2base64(im2)
            }
    r = requests.get("http://face.icybee.cn/face/face_recognize", data=payload)
    print(r.text)
    #print(json.loads(r.text)['dist'])
项目:tiny-imagenet    作者:jcjohnson    | 项目源码 | 文件源码
def write_data_in_synset_folders(part_data, part, out_dir, image_size):
  part_dir = os.path.join(out_dir, part)
  os.mkdir(part_dir)
  num_wnids = len(part_data)
  for i, (wnid, wnid_data) in enumerate(part_data.iteritems()):
    print 'Writing images for synset %d / %d of %s' % (i + 1, num_wnids, part)
    wnid_dir = os.path.join(part_dir, wnid)
    os.mkdir(wnid_dir)
    image_dir = os.path.join(wnid_dir, 'images')
    os.mkdir(image_dir)
    boxes_filename = os.path.join(wnid_dir, '%s_boxes.txt' % wnid)
    boxes_file = open(boxes_filename, 'w')
    for i, (img_filename, bbox) in enumerate(wnid_data):
      out_img_filename = '%s_%d.JPEG' % (wnid, i)
      full_out_img_filename = os.path.join(image_dir, out_img_filename)
      img = imread(img_filename)
      img_resized, bbox_resized = resize_image(img, image_size, bbox)
      imsave(full_out_img_filename, img_resized)
      boxes_file.write('%s\t%d\t%d\t%d\t%d\n' % (out_img_filename,
                       bbox_resized[0], bbox_resized[1], bbox_resized[2], bbox_resized[3]))
    boxes_file.close()
项目:tensorflow_yolo2    作者:wenxichen    | 项目源码 | 文件源码
def image_read(self, imname):
        image = misc.imread(imname, mode='RGB').astype(np.float)
        r,c,ch = image.shape
        if r < 299 or c < 299:
            # TODO: check too small images
            # print "##too small!!"
            image = misc.imresize(image, (299, 299, 3))
        elif r > 299 or c > 299:
            image = image[(r-299)/2 : (r-299)/2 + 299, (c-299)/2 : (c-299)/2 + 299, :]
        # print r, c, image.shape
        assert image.shape == (299, 299, 3)
        image = (image / 255.0) * 2.0 - 1.0
        if self.random_noise:
            add_noise = bool(random.getrandbits(1))
            if add_noise:
                eps = random.choice([4.0, 8.0, 12.0, 16.0]) / 255.0 * 2.0
                noise_image = image + eps * np.random.choice([-1, 1], (299,299,3))
                image = np.clip(noise_image, -1.0, 1.0)
        return image
项目:crawl-dataset    作者:e-lab    | 项目源码 | 文件源码
def resizeImg(imgPath,img_size):
    try:
        img = imread(imgPath)
        h, w, _ = img.shape
        scale = 1
        if w >= h:
            new_w = img_size
            if w  >= new_w:
                scale = float(new_w) / w
            new_h = int(h * scale)
        else:
            new_h = img_size
            if h >= new_h:
                scale = float(new_h) / h
            new_w = int(w * scale)
        new_img = imresize(img, (new_h, new_w), interp='bilinear')
        imsave(imgPath,new_img)
        print('Img Resized as {}'.format(img_size))
    except Exception as e:
        print(e)
项目:crawl-dataset    作者:e-lab    | 项目源码 | 文件源码
def resizeImg(imgPath,img_size):
    img = imread(imgPath)
    h, w, _ = img.shape
    scale = 1
    if w >= h:
        new_w = img_size
        if w  >= new_w:
            scale = float(new_w) / w
        new_h = int(h * scale)
    else:
        new_h = img_size
        if h >= new_h:
            scale = float(new_h) / h
        new_w = int(w * scale)
    new_img = imresize(img, (new_h, new_w), interp='bilinear')
    imsave(imgPath,new_img)

#Download img
#Later we can do multi thread apply workers to do faster work
项目:crawl-dataset    作者:e-lab    | 项目源码 | 文件源码
def resizeImg(imgPath,img_size):
    img = imread(imgPath)
    h, w, _ = img.shape
    scale = 1
    if w >= h:
        new_w = img_size
        if w  >= new_w:
            scale = float(new_w) / w
        new_h = int(h * scale)
    else:
        new_h = img_size
        if h >= new_h:
            scale = float(new_h) / h
        new_w = int(w * scale)
    new_img = imresize(img, (new_h, new_w), interp='bilinear')
    imsave(imgPath,new_img)
    print('Img Resized as {}'.format(img_size))
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def get_rgbd_file(self, dirname, offset):
        associations = self.seq_dir_map[dirname]['associations']

        if associations[offset, 1].startswith('depth'):
            rgb_filename = os.path.join(dirname, associations[offset, 3])
            depth_filename = os.path.join(dirname, associations[offset, 1])
        else:
            rgb_filename = os.path.join(dirname, associations[offset, 1])
            depth_filename = os.path.join(dirname, associations[offset, 3])

        rgb_img = ndimage.imread(rgb_filename)
        depth_img = ndimage.imread(depth_filename)
        width = height = 224

        # Reshape
        depth_img = np.reshape(depth_img, list(depth_img.shape) + [1])
        depth_img = 255 * depth_img / np.max(depth_img)

        rgbd_img = np.concatenate((rgb_img, depth_img), 2)

        # Resize
        rgbd_img = transform.resize(rgbd_img, [width, height], preserve_range=True)

        return rgb_filename, depth_filename, rgbd_img.astype(np.float32)
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def read_rgb_image(filepath):
    rgb_img = ndimage.imread(filepath)
    width = height = 224
    img_width = rgb_img.shape[1]
    img_height = rgb_img.shape[0]

    # scale such that smaller dimension is 256
    if img_width < img_height:
        factor = 256.0 / img_width
    else:
        factor = 256.0 / img_height
    rgb_img = transform.rescale(rgb_img, factor, preserve_range=True)

    # crop randomly
    width_start = np.random.randint(0, rgb_img.shape[1] - width)
    height_start = np.random.randint(0, rgb_img.shape[0] - height)

    rgb_img = rgb_img[height_start:height_start + height, width_start:width_start + width]
    return rgb_img
项目:Neural-Style-Transfer-Windows    作者:titu1994    | 项目源码 | 文件源码
def load_mask(mask_path, shape):
    mask = imread(mask_path, mode="L") # Grayscale mask load
    width, height, _ = shape
    mask = imresize(mask, (width, height), interp='bicubic').astype('float32')

    # Perform binarization of mask
    mask[mask <= 127] = 0
    mask[mask > 128] = 255

    max = np.amax(mask)
    mask /= max

    return mask


# util function to apply mask to generated image
项目:Neural-Style-Transfer-Windows    作者:titu1994    | 项目源码 | 文件源码
def preprocess_image(image_path, load_dims=False, style_image=False):
    global img_WIDTH, img_HEIGHT, aspect_ratio, b_scale_ratio_height, b_scale_ratio_width

    img = imread(image_path, mode="RGB") # Prevents crashes due to PNG images (ARGB)
    if load_dims:
        img_WIDTH = img.shape[0]
        img_HEIGHT = img.shape[1]
        aspect_ratio = img_HEIGHT / img_WIDTH

    if style_image:
        b_scale_ratio_width = float(img.shape[0]) / img_WIDTH
        b_scale_ratio_height = float(img.shape[1]) / img_HEIGHT

    img = imresize(img, (img_width, img_height))
    img = img.transpose((2, 0, 1)).astype('float64')
    img = np.expand_dims(img, axis=0)
    return img

# util function to convert a tensor into a valid image
项目:DPED    作者:aiff22    | 项目源码 | 文件源码
def load_test_data(phone, dped_dir, IMAGE_SIZE):

    test_directory_phone = dped_dir + str(phone) + '/test_data/patches/' + str(phone) + '/'
    test_directory_dslr = dped_dir + str(phone) + '/test_data/patches/canon/'

    NUM_TEST_IMAGES = len([name for name in os.listdir(test_directory_phone)
                           if os.path.isfile(os.path.join(test_directory_phone, name))])

    test_data = np.zeros((NUM_TEST_IMAGES, IMAGE_SIZE))
    test_answ = np.zeros((NUM_TEST_IMAGES, IMAGE_SIZE))

    for i in range(0, NUM_TEST_IMAGES):

        I = np.asarray(misc.imread(test_directory_phone + str(i) + '.jpg'))
        I = np.float16(np.reshape(I, [1, IMAGE_SIZE]))/255
        test_data[i, :] = I

        I = np.asarray(misc.imread(test_directory_dslr + str(i) + '.jpg'))
        I = np.float16(np.reshape(I, [1, IMAGE_SIZE]))/255
        test_answ[i, :] = I

        if i % 100 == 0:
            print(str(round(i * 100 / NUM_TEST_IMAGES)) + "% done", end="\r")

    return test_data, test_answ
项目:mnist-flask    作者:akashdeepjassal    | 项目源码 | 文件源码
def predict():
    # get data from drawing canvas and save as image
    parseImage(request.get_data())

    # read parsed image back in 8-bit, black and white mode (L)
    x = imread('output.png', mode='L')
    x = np.invert(x)
    x = imresize(x,(28,28))

    # reshape image data for use in neural network
    x = x.reshape(1,28,28,1)
    with graph.as_default():
        out = model.predict(x)
        print(out)
        print(np.argmax(out, axis=1))
        response = np.array_str(np.argmax(out, axis=1))
        return response
项目:cs234_final_project    作者:nipunagarwala    | 项目源码 | 文件源码
def process_mot(path):
    '''
    1920 x 1080 -> 384 x 216
    640 x 480 -> 320 x 240
    '''
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                if img.shape == LARGE_IMAGE_SIZE:
                    img = misc.imresize(img, size=LARGE_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                elif img.shape == MEDIUM_IMAGE_SIZE:
                    img = misc.imresize(img, size=MEDIUM_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                else:
                    print("Unexpected shape " + str(img.shape))
                    continue
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
    return images
项目:cs234_final_project    作者:nipunagarwala    | 项目源码 | 文件源码
def process_vot(path, min_height, min_width):
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        img_shape = None
        pad_height = 0
        pad_width = 0
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                img_shape = img.shape
                ratio = min(float(min_width)/img.shape[1], float(min_height)/img.shape[0])
                img = misc.imresize(img, size=ratio)
                img, pad_height, pad_width = pad_image(img, (min_height, min_width))
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
        if img_shape:
            gt_path = os.path.join(dirpath, "groundtruth.txt")
            preprocess_label(gt_path, ratio, img_shape, min_height, min_width, pad_height, pad_width)
    return images
项目:nnp    作者:dribnet    | 项目源码 | 文件源码
def do_roc(self):
        if self.gan_mode and self.dmodel2 is not None:
            dmodel_cur = self.dmodel2
            scale_factor = 2
        elif self.dmodel is not None:
            dmodel_cur = self.dmodel
            scale_factor = self.scale_factor
        else:
            theApp.cur_hist_tex = theApp.standard_hist_tex
            theApp.cur_roc_tex = theApp.standard_roc_tex
            return
        encoded_vector_source = self.get_encoded(dmodel_cur, self.cur_vector_source, scale_factor)
        encoded_vector_dest = self.get_encoded(dmodel_cur, self.cur_vector_dest, scale_factor)
        attribute_vector = encoded_vector_dest - encoded_vector_source
        threshold = None
        outfile = "{}/{}".format(roc_dir, get_date_str())
        do_roc(attribute_vector, encoded, attribs, attribute_index, threshold, outfile)
        hist_img = imread("{}_hist_both.png".format(outfile), mode='RGB')
        roc_img = imread("{}_roc.png".format(outfile), mode='RGB')
        hist_img = imresize(hist_img, roc_image_resize)
        roc_img = imresize(roc_img, roc_image_resize)
        theApp.cur_hist_tex = image_to_texture(hist_img)
        theApp.cur_roc_tex = image_to_texture(roc_img)
项目:behavioral-cloning    作者:BillZito    | 项目源码 | 文件源码
def save_images(img_dir, dest_file):
  img_list = os.listdir(img_dir)
  img_combo = []

  print('starting to save ' + str(len(img_list)) + ' images')

  count = 0
  for img_name in img_list:
    # can change this line to img_name.startswith('center') for center imgs
    if not img_name.startswith('.'):

      if count % 500 == 0:
        print('count is', count)

      img = misc.imread(img_dir + '/' + img_name)
      img_combo.append(img)
      count += 1

  #cast to numpy array and save to file
  all_images = np.array(img_combo)
  print('images shape', all_images.shape)
  np.save(dest_file, all_images)
项目:behavioral-cloning    作者:BillZito    | 项目源码 | 文件源码
def show_file_images(filename, img_list):
  fig = plt.figure()

  #for 9 random images, print them 
  for img_num in range(0, 9):
    random_num = random.randint(0, len(img_list))
    img_name = img_list[random_num]
    print('image name is ', img_name)
    img = misc.imread(filename + img_name)
    np_img = np.array(img)
    flipped_img = np.fliplr(np_img)[60:160]

    # print('img is ', img)
    img = img[60:160]
    fig.add_subplot(5, 5, img_num * 2 + 1)
    plt.imshow(img)
    fig.add_subplot(5, 5, img_num * 2 + 2)
    plt.imshow(flipped_img)

  plt.show()
项目:behavioral-cloning    作者:BillZito    | 项目源码 | 文件源码
def count_images(img_dir):
  #add each to img_combo
  img_list = os.listdir(img_dir)
  l_count = 0
  c_count = 0
  r_count =0
  for img_name in img_list:
    if img_name.startswith('center'):
      c_count += 1
    elif img_name.startswith('left'):
      l_count += 1
    elif img_name.startswith('right'):
      r_count +=1
      # img = misc.imread(img_dir + '/' + img_name)
      # img_combo.append(img)
  print('counts l, c, r:', l_count, c_count, r_count)
项目:face    作者:xpzouying    | 项目源码 | 文件源码
def get_images_from_request(request_file, names):
    """get pillow images from flask request

    @input: request_file: request.files
    @input: names: image name list for read
    @output: type ndarray. The array obtained by reading the image.
    """

    img_list = []
    for name in names:
        # get upload file
        f = request_file.get(name)
        if f is None:
            continue

        img = misc.imread(f)
        img_list.append(img)

    return img_list
项目:Captcha-recognition-TF    作者:dukn    | 项目源码 | 文件源码
def view_(_pred,_lable):

    fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)]
    img = []
    for fn in fname:
        img.append(Image.open(open(fn)))
        #img.append(misc.imread(fn).astype(np.float))
    for i in range(len(img)):
        pylab.subplot(4,5,i+1); pylab.axis('off')

        pylab.imshow(img[i])
        #pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray"))
        #pylab.text(40,60,_pred[i],color = 'b')
        if ( _pred[i] == _lable[i] ):
            pylab.text(40,65,_pred[i],color = 'b',size = 15)
        else:
            pylab.text(40,65,_pred[i],color = 'r',size = 15)

        pylab.text(40,92,_lable[i],color = 'g',size = 15)

    pylab.show()
项目:bird_classification    作者:halwai    | 项目源码 | 文件源码
def get_batch(generator_type, set_type, height, width):
    imgs = []
    if set_type == 'train' or set_type == 'val':
        for paths, bbs, labels in generator_type:
            for i  in range(len(paths)):
                img = gray2rgb(misc.imread(paths[i]), paths[i])
                img = img[bbs[i][1]:bbs[i][1]+bbs[i][3], bbs[i][0]:bbs[i][0]+bbs[i][2],:]
                img = preprocess_image(img, height, width, set_type)
                imgs.append(img)
            imgs = np.asarray(imgs)
            break
        return imgs, labels
    else:
        for paths, bbs in generator_type:
            for i  in range(len(paths)):
                img = gray2rgb(misc.imread(paths[i]), paths[i])
                img = img[bbs[i][1]:bbs[i][1]+bbs[i][3], bbs[i][0]:bbs[i][0]+bbs[i][2],:]
                imgs.append(preprocess_image(img, height, width, set_type))
            imgs = np.asarray(imgs)
            break
        return imgs, None



#store in required csv format
项目:Cat-Segmentation    作者:ardamavi    | 项目源码 | 文件源码
def get_img(data_path):
    # Getting image array from path:
    img = imread(data_path)
    img = imresize(img, (64, 64))
    return img
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def readimg(img_path):
    img = misc.imread(img_path, mode='RGB')

    img = misc.imresize(img, (160, 160))
    img = facenet.prewhiten(img)
    img = np.expand_dims(img, axis=0)

    return img
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def get_embedding(img_path):
    img = misc.imread(img_path, mode='RGB')

    # judge alignment
    aligned = align.align(160, img, [0, 0, img.shape[1], img.shape[0]], landmarkIndices=landmarkIndices)


    img = facenet.prewhiten(img)
    img = np.expand_dims(img, axis=0)

    aligned = facenet.prewhiten(aligned)
    aligned = np.expand_dims(aligned, axis=0)


    # Run forward pass to calculate embeddings
    feed_dict = {images_placeholder: img, phase_train_placeholder: False}
    emb = sess.run(embeddings, feed_dict=feed_dict)

    # Run forward pass to calculate embeddings
    feed_dict_aligned = {images_placeholder: aligned, phase_train_placeholder: False}
    emb_aligned = sess.run(embeddings, feed_dict=feed_dict_aligned)

    return emb.ravel(), emb_aligned.ravel()

# # for test
# import os
# from time import time
# def main(dir_path):
#     img_all = os.listdir(dir_path)
#     for f in img_all:
#         start = time()
#         embedding_result = get_embedding(os.path.join(dir_path, f))
#         print time() - start
#         print embedding_result
#
# main('./data')
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True):
    nrof_samples = len(image_paths)
    images = np.zeros((nrof_samples, image_size, image_size, 3))
    for i in range(nrof_samples):
        img = misc.imread(image_paths[i])
        if img.ndim == 2:
            img = to_rgb(img)
        if do_prewhiten:
            img = prewhiten(img)
        img = crop(img, do_random_crop, image_size)
        img = flip(img, do_random_flip)
        images[i,:,:,:] = img
    return images
项目:visual-search    作者:GYXie    | 项目源码 | 文件源码
def load_image(img_file_path):
    img = imread(img_file_path)
    img = (imresize(img, (227, 227))[:, :, :3]).astype(float32)
    img = img - mean(img)

    return img
项目:visual-search    作者:GYXie    | 项目源码 | 文件源码
def load_images(image_names):
    imgs = []
    for img_name in image_names:
        img = imread(img_name)
        img = (imresize(img, (227, 227))[:, :, :3]).astype(float32)
        img = img - mean(img)
        imgs.append(img)
    return imgs
项目:visual-search    作者:GYXie    | 项目源码 | 文件源码
def main():
    img = imread(args.input_path)
    img = ndimage.rotate(img, args.angle, mode=args.mode)
    misc.imsave(args.output_path, img)