我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用scipy.stats.ttest_1samp()。
def _ttest(self): utils.printf('') utils.printf('========== T-TEST ==========') utils.printf('{:25s} {:25s} {:25s} {:25s}'.format('IND. VAR.','COEF.','T-STAT','P-VALUE')) ts = {} lines = {} for k,vlist in self.betas.items(): t = stats.ttest_1samp(vlist,self.model.params[k]) ts[k] = abs(round(float(t[0]),6)) lines[k] = '{:20s} {:25f} {:25f} {:25f}'.format(k,self.model.params[k],round(float(t[0]),6),round(float(t[1]),6)) ts = utils.sortDictByValue(ts,True) for t in ts: utils.printf(lines[t[0]]) ##################################################################################### # Plots #####################################################################################
def calculate_single_sample_ttest_pvals(self): '''Calculate p-values from single sample t-test''' expr_t = self.expr_t expr_n = self.expr_n mes_size, gene_size = expr_t.shape all_pvals = [] for i in range(gene_size): n_sample = expr_n[:,i] cur_pvals = [] n_sample_r = randomize_samples(n_sample) cur_pvals = [ttest_func2(n_sample_r,expr_val)[1] for expr_val in expr_t[:,i]] all_pvals.append(cur_pvals) all_pvals = np.array(all_pvals).T all_pvals[all_pvals == 0] = sys.float_info.min self.s_pval_list = all_pvals
def test_analysis(self): my_test = Ttest1Sample(self.mean, np.array(self.a)) p_value = my_test.p_value t, p_value_expected = ttest_1samp(self.a, self.mean) self.assertEqual(round(p_value_expected, self.max_precision), round(p_value, self.max_precision))
def test_analysis_list(self): my_test = Ttest1Sample(self.mean, np.array(self.a)) p_value = my_test.p_value my_test.report() t, p_value_expected = ttest_1samp(self.a, self.mean) self.assertEqual(round(p_value_expected, self.max_precision), round(p_value, self.max_precision))
def analyze(log_fname, nn=True, max_bin=6, n_first_removed=3): """ Analyze anonymized deepbeat.org usage logs. Input: log_fname -- Path to the log file. nn -- Use scores with the NN feature or not. max_bin -- Maximum score difference considered (if too large, the last bins get very noisy). n_first_removed -- From each user, remove this many first selections, since in the beginning the user might be just playing with the tool. Output: bin_centers probabilities to select the better line according to the algorithm standard deviations """ users, selections = read_log(log_fname) print "%d selections, %d unique users" % (len(selections), len(set(users))) us = {} # user -> selections for u, s in zip(users, selections): if u not in us: us[u] = [] us[u].append(s) lens = [len(s) for s in us.itervalues()] lens = np.array(lens) score_differences = extract_feedback(us, n_first_removed, nn) print "t-test:", stats.ttest_1samp(score_differences, 0) sel_ranks = [s['selectedLine'] for s in selections] print "Histogram of selected line indices:" print np.histogram(sel_ranks, range(21)) xs, probs, stds = compute_probs(score_differences, max_bin) return xs, probs, stds
def testForSDN(testMethod, dstIP, count, interval): global verbose rtt = [] sentMS = 0 if(testMethod == "icmp"): sdnpwn.message("Testing with ICMP", sdnpwn.NORMAL) icmp = (IP(dst=dstIP)/ICMP()) for i in range(0,count): sentMS = int(round(time.time() * 1000)) resp = sr1(icmp) rtt.append((int(round(time.time() * 1000))) - sentMS) time.sleep(interval) elif(testMethod == "arp"): sdnpwn.message("Testing with ARP", sdnpwn.NORMAL) for i in range(0,count): sentMS = int(round(time.time() * 1000)) resp = arping(dstIP) rtt.append((int(round(time.time() * 1000))) - sentMS) time.sleep(interval) initValue = rtt[0] rtt.pop(0) #Perform T-Test to check if first latency value is significantly different from others in our sample res = stats.ttest_1samp(rtt, initValue) if(verbose == True): sdnpwn.message("Initial RTT: " + str(initValue), sdnpwn.VERBOSE) sdnpwn.message("RTTs for other traffic: " + str(rtt), sdnpwn.VERBOSE) sdnpwn.message("Calculated p-value for inital RTT is " + str(res[1]), sdnpwn.VERBOSE) if(res[1] < .05 and all(i < initValue for i in rtt)): #If the p-value is less that 5% we can say that initValue is significant return True else: return False