我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用scipy.log10()。
def fin(size,signal): fil = sp.zeros(size,sp.float32) for i in xrange(size): ratio=sp.log10((i+1)/float(size)*10+1.0) if ratio>1.0: ratio=1.0 fil[i] = ratio return fil*signal
def fout(size,signal): fil = sp.zeros(size,sp.float32) for i in xrange(size): ratio = sp.log10((size-i)/float(size)*10+1.0) if ratio>1.0: ratio = 1.0 fil[i] = ratio return fil*signal
def create_labeled_data(aud_sample, nasal=0): num_windows = (len(aud_sample) - WINDOW_SIZE)/WINDOW_STRIDE features = np.zeros((num_windows, WINDOW_SIZE)) labels = np.zeros(num_windows) idx = 0 for i in range(0, len(aud_sample), WINDOW_STRIDE): window = aud_sample[i:i+WINDOW_SIZE] for j in range(len(window), WINDOW_SIZE): window = np.append(window,0) if is_periodic(window) is False: continue # FFT to shift to frequency domain - use frequency spectrum as features fft_values = abs(fft(window)) feat = 20*scipy.log10(fft_values) features[idx:, ] = feat labels[idx] = nasal idx += 1 return features[0:idx, ], labels[0:idx]
def get_price_paid_coords(): postcodes = load_postcodes() price_paid = load_price_paid()[['price', 'date', 'postcode']] merged = pd.merge(price_paid, postcodes, left_on='postcode', right_index=True) london = filter_to_london(merged).copy() london['price'] = sp.log10(london['price']) return london.drop('postcode', 1)
def get_base(unit ='bit'): if unit == 'bit': log = sp.log2 elif unit == 'nat': log = sp.log elif unit in ('digit', 'dit'): log = sp.log10 else: raise ValueError('The "unit" "%s" not understood' % unit) return log
def svpice( t) : ''' Returns saturation vapor pressure over ice, in hPa, given temperature in K. The Goff-Gratch equation (Smithsonian Met. Tables, 5th ed., pp. 350, 1984) ''' a = 273.16 / t exponent = -9.09718 * (a - 1.) - 3.56654 * log10(a) + 0.876793 * (1. - 1./a) + log10(6.1071) return 10.0**exponent
def plot_resid(d,savename='resfig1.png'): """ Plots the residual frequency after the first wipe using the TLE velocity. """ flim = [-2.e3, 2.e3] t = d['tvec'] dates = [dt.datetime.fromtimestamp(ts) for ts in t] datenums = md.date2num(dates) xfmt = md.DateFormatter('%Y-%m-%d %H:%M:%S') fig1 = plt.figure(figsize=(7, 9)) doppler_residual = sp.interpolate.interp1d(d['tvec'],d['dopfit']) fvec = d["fvec"] res0 = d["res0"] res1 = d["res1"] plt.subplot(211) mesh = plt.pcolormesh(datenums, fvec, sp.transpose(10.*sp.log10(res0+1e-12)), vmin=-5, vmax=25) plt.plot(datenums, (150.0/400.0)*doppler_residual(t), "r--", label="doppler resid") ax = plt.gca() ax.xaxis.set_major_formatter(xfmt) plt.ylim(flim) plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) plt.xlabel("UTC") plt.ylabel("Frequency (Hz)") plt.title("Power ch0 (dB) %1.2f MHz"%(150.012)) plt.legend() plt.colorbar(mesh, ax=ax) # quicklook spectra of residuals spectra along with measured Doppler residual from second channel. plt.subplot(212) mesh = plt.pcolormesh(datenums, fvec, sp.transpose(10.*sp.log10(res1+1e-12)), vmin=-5, vmax=25) plt.plot(datenums, doppler_residual(t), "r--", label="doppler resid") ax = plt.gca() ax.xaxis.set_major_formatter(xfmt) plt.ylim(flim) plt.xlabel("UTC") plt.ylabel("Frequency (Hz)") plt.title("Power ch1 (dB), %1.2f MHz"%(400.032)) plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) plt.legend() plt.colorbar(mesh, ax=ax) plt.tight_layout() print('Saving residual plots: '+savename) plt.savefig(savename, dpi=300) plt.close(fig1)