Python scipy 模块,randn() 实例源码

我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用scipy.randn()

项目:pyabc    作者:neuralyzer    | 项目源码 | 文件源码
def test_stop_acceptance_rate_too_low(db_path):
    set_acc_rate = 0.2

    def model(x):
        return {"par": x["par"] + sp.randn()}

    def dist(x, y):
        return abs(x["par"] - y["par"])

    abc = ABCSMC(model, Distribution(par=st.uniform(0, 10)), dist, 10)
    abc.new(db_path, {"par": .5})
    history = abc.run(-1, 8, min_acceptance_rate=set_acc_rate)
    df = history.get_all_populations()
    df["acceptance_rate"] = df["particles"] / df["samples"]
    assert df["acceptance_rate"].iloc[-1] < set_acc_rate
    assert df["acceptance_rate"].iloc[-2] >= set_acc_rate
项目:pyabc    作者:neuralyzer    | 项目源码 | 文件源码
def test_resume(db_path, gt_model):
    def model(parameter):
        return {"data": parameter["mean"] + sp.randn()}

    prior = Distribution(mean=RV("uniform", 0, 5))

    def distance(x, y):
        x_data = x["data"]
        y_data = y["data"]
        return abs(x_data - y_data)

    abc = ABCSMC(model, prior, distance)
    run_id = abc.new(db_path, {"data": 2.5}, gt_model=gt_model)
    print("Run ID:", run_id)
    hist_new = abc.run(minimum_epsilon=0, max_nr_populations=1)
    assert hist_new.n_populations == 1

    abc_continued = ABCSMC(model, prior, distance)
    run_id_continued = abc_continued.load(db_path, run_id)
    print("Run ID continued:", run_id_continued)
    hist_contd = abc_continued.run(minimum_epsilon=0, max_nr_populations=1)

    assert hist_contd.n_populations == 2
    assert hist_new.n_populations == 2
项目:mimclib    作者:StochasticNumerics    | 项目源码 | 文件源码
def aTest(ks):
    times = np.linspace(0,1,100)
    dt = times[1]-times[0]
    W = sp.randn(100)
    W[0] *=0
    W *= np.sqrt(dt)
    W = np.cumsum(W)*dt
    return [np.sum(np.sin(k*times)*W) for k in ks]
项目:pyabc    作者:neuralyzer    | 项目源码 | 文件源码
def df(request):
    par = request.param
    if par == "empty":
        return pd.DataFrame()
    if par == "int":
        return pd.DataFrame({"a": sp.random.randint(-20, 20, 100),
                             "b": sp.random.randint(-20, 20, 100)})
    if par == "float":
        return pd.DataFrame({"a": sp.randn(100),
                             "b": sp.randn(100)})
    if par == "non_numeric_str":
        return pd.DataFrame({"a": ["foo", "bar"],
                             "b": ["bar", "foo"]})

    if par == "numeric_str":
        return pd.DataFrame({"a": list(map(str, sp.randn(100))),
                             "b": list(map(str,
                                           sp.random.randint(-20, 20, 100)))})
    if par == "int-float-numeric_str":
        return pd.DataFrame({"a": sp.random.randint(-20, 20, 100),
                             "b": sp.randn(100),
                             "c": list(map(str,
                                           sp.random.randint(-20, 20, 100)))})
    if par == "int-float-non_numeric_str-str_ind":
        return pd.DataFrame({"a": [1, 2],
                             "b": [1.1, 2.2],
                             "c": ["foo", "bar"]},
                            index=["first", "second"])
    if par == "int-float-numeric_str-str_ind":
        return pd.DataFrame({"a": [1, 2],
                             "b": [1.1, 2.2],
                             "c": ["1", "2"]},
                            index=["first", "second"])
    raise Exception("Invalid Test DataFrame Type")
项目:pyabc    作者:neuralyzer    | 项目源码 | 文件源码
def object_(request):
    par = request.param
    if par == "empty":
        return pd.DataFrame()
    if par == "int":
        return pd.DataFrame({"a": sp.random.randint(-20, 20, 100),
                             "b": sp.random.randint(-20, 20, 100)})
    if par == "float":
        return pd.DataFrame({"a": sp.randn(100),
                             "b": sp.randn(100)})
    if par == "non_numeric_str":
        return pd.DataFrame({"a": ["foo", "bar"],
                             "b": ["bar", "foo"]})

    if par == "numeric_str":
        return pd.DataFrame({"a": list(map(str, sp.randn(100))),
                             "b": list(map(str,
                                           sp.random.randint(-20, 20, 100)))})
    if par == "int-float-numeric_str":
        return pd.DataFrame({"a": sp.random.randint(-20, 20, 100),
                             "b": sp.randn(100),
                             "c": list(map(str,
                                           sp.random.randint(-20, 20, 100)))})
    if par == "int-float-non_numeric_str-str_ind":
        return pd.DataFrame({"a": [1, 2],
                             "b": [1.1, 2.2],
                             "c": ["foo", "bar"]},
                            index=["first", "second"])
    if par == "int-float-numeric_str-str_ind":
        return pd.DataFrame({"a": [1, 2],
                             "b": [1.1, 2.2],
                             "c": ["1", "2"]},
                            index=["first", "second"])
    if par == "py-int":
        return 42
    if par == "py-float":
        return 42.42
    if par == "py-str":
        return "foo bar"
    if par == "np-int":
        return sp.random.randint(-20, 20, 100)
    if par == "np-float":
        return sp.random.randn(100)
    if par == "r-df-cars":
        return r["mtcars"]
    if par == "r-df-iris":
        return r["iris"]
    raise Exception("Invalid Test DataFrame Type")