我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用scipy.real()。
def istft(X, scale = 1, overlap=4): fftsize=(X.shape[1]-1)*2 hop = fftsize / overlap w = scipy.hanning(fftsize+1)[:-1] x = scipy.zeros(X.shape[0]*hop) wsum = scipy.zeros(X.shape[0]*hop) for n,i in enumerate(range(0, len(x)-fftsize, hop)): x[i:i+fftsize] += scipy.real(np.fft.irfft(X[n])) * w # overlap-add wsum[i:i+fftsize] += w ** 2. pos = wsum != 0 x[pos] /= wsum[pos] x = x * scale return x.astype(np.int16)
def fit(self, X, w): if len(X) == 0: raise NotEnoughParticles("Fitting not possible.") self.X_arr = X.as_matrix() ctree = cKDTree(X) _, indices = ctree.query(X, k=min(self.k + 1, X.shape[0])) covs, inv_covs, dets = list(zip(*[self._cov_and_inv(n, indices) for n in range(X.shape[0])])) self.covs = sp.array(covs) self.inv_covs = sp.array(inv_covs) self.determinants = sp.array(dets) self.normalization = sp.sqrt( (2 * sp.pi) ** self.X_arr.shape[1] * self.determinants) if not sp.isreal(self.normalization).all(): raise Exception("Normalization not real") self.normalization = sp.real(self.normalization)
def create_spectrogram(wav): spec = stft.stft(wav, fftsize=fft_size) num_samples = spec.shape[0] # zero DC component #spec[0:num_samples,0:1] = 0.0 # zero part where voice never is #spec[0:num_samples,0:10] = 0.0 spec *= spec_norm spec_mags = np.sqrt(np.square(scipy.real(spec)) + np.square(scipy.imag(spec))) return spec, spec_mags
def _gauss_from_coefficients_numpy(alpha, beta): assert isinstance(alpha, numpy.ndarray) assert isinstance(beta, numpy.ndarray) # eigh_tridiagonal is only available from scipy 1.0.0 try: from scipy.linalg import eigh_tridiagonal except ImportError: # Use eig_banded x, V = eig_banded(numpy.vstack((numpy.sqrt(beta), alpha)), lower=False) w = beta[0]*scipy.real(scipy.power(V[0, :], 2)) else: x, V = eigh_tridiagonal(alpha, numpy.sqrt(beta[1:])) w = beta[0] * V[0, :]**2 return x, w
def istft(X, fs, T, hop): #x = scipy.zeros(T*fs) x = scipy.zeros(T) framesamp = X.shape[1] hopsamp = int(hop*fs) for n,i in enumerate(range(0, len(x)-framesamp, hopsamp)): x[i:i+framesamp] += scipy.real(scipy.fftpack.ifft(X[n])) return x
def irstft(X, fs, T, hop): #x = scipy.zeros(T*fs) x = scipy.zeros(T) framesamp = X.shape[1] hopsamp = int(hop*fs) for n,i in enumerate(range(0, len(x)-framesamp, hopsamp)): x[i:i+framesamp] += scipy.real(scipy.fftpack.irfft(X[n])) return x # an audio-making function
def create_spectrogram(wav): spec = stft.stft(wav, fftsize=fft_size) num_samples = spec.shape[0] # zero DC component #spec[0:num_samples,0:1] = 0.0 spec *= spec_norm spec_mags = np.sqrt(np.square(scipy.real(spec)) + np.square(scipy.imag(spec))) return spec, spec_mags
def istft(X, overlap=4): fftsize=(X.shape[1]-1)*2 hop = fftsize / overlap w = scipy.hanning(fftsize+1)[:-1] x = scipy.zeros(X.shape[0]*hop) wsum = scipy.zeros(X.shape[0]*hop) for n,i in enumerate(range(0, len(x)-fftsize, hop)): x[i:i+fftsize] += scipy.real(np.fft.irfft(X[n])) * w # overlap-add wsum[i:i+fftsize] += w ** 2. pos = wsum != 0 x[pos] /= wsum[pos] return x
def istft(X, fs, T, hop): x = scipy.zeros(T*fs) framesamp = X.shape[1] hopsamp = int(hop*fs) for n,i in enumerate(range(0, len(x)-framesamp, hopsamp)): x[i:i+framesamp] += scipy.real(scipy.ifft(X[n])) return x