我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用skimage.exposure.adjust_sigmoid()。
def predict_image(self, test_img): """ predicts classes of input image :param test_img: filepath to image to predict on :param show: displays segmentation results :return: segmented result """ img = np.array( rgb2gray( imread( test_img ).astype( 'float' ) ).reshape( 5, 216, 160 )[-2] ) / 256 plist = [] # create patches from an entire slice img_1 = adjust_sigmoid( img ).astype( float ) edges_1 = adjust_sigmoid( img, inv=True ).astype( float ) edges_2 = img_1 edges_5_n = normalize( laplace( img_1 ) ) edges_5_n = img_as_float( img_as_ubyte( edges_5_n ) ) plist.append( extract_patches_2d( edges_1, (23, 23) ) ) plist.append( extract_patches_2d( edges_2, (23, 23) ) ) plist.append( extract_patches_2d( edges_5_n, (23, 23) ) ) patches = np.array( zip( np.array( plist[0] ), np.array( plist[1] ), np.array( plist[2] ) ) ) # predict classes of each pixel based on model full_pred = self.model.predict_classes( patches ) fp1 = full_pred.reshape( 194, 138 ) return fp1
def run(self, imgin_path, imgout_path=None, increase_exposure=False): imgin_path = self.__expand_user(imgin_path) img = misc.imread(imgin_path) img_blurred = self.__blur(img) img = self.__divide(img, img_blurred) if increase_exposure: img = exposure.adjust_sigmoid(img) if not imgout_path: imgout_path = self.__add_suffix(imgin_path) misc.imsave(imgout_path, img) print("Saved to", imgout_path)
def _augment(xs): """Image adjustment doesn't change image shape, but for intensity. Return: images: 4-d tensor with shape [depth, height, width, channels] """ # `xs` has shape [depth, height, width] with value in [0, 1]. brt_gamma, brt_gain = np.random.uniform(low=0.9, high=1.1, size=2) aj_bright = adjust_gamma(xs, brt_gamma, brt_gain) contrast_gain = np.random.uniform(low=5, high=10) aj_contrast = adjust_sigmoid(aj_bright, gain=contrast_gain) return aj_contrast
def constant(x, cutoff=0.5, gain=10, inv=False, is_random=False): # TODO x = exposure.adjust_sigmoid(x, cutoff=cutoff, gain=gain, inv=inv) return x
def sigmoid_transform(img, cutoff=0.5): return exposure.adjust_sigmoid(img, cutoff)
def contrast_enhance(img): return adjust_sigmoid(img, cutoff=0.5, gain=10)
def adjust_hue(im, hout=0.66, is_offset=True, is_clip=True, is_random=False): """ Adjust hue of an RGB image. This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the hue channel, converts back to RGB and then back to the original data type. For TF, see `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`_ and `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`_. Parameters ----------- im : should be a numpy arrays with values between 0 and 255. hout : float. - If is_offset is False, set all hue values to this value. 0 is red; 0.33 is green; 0.66 is blue. - If is_offset is True, add this value as the offset to the hue channel. is_offset : boolean, default True. is_clip : boolean, default True. - If True, set negative hue values to 0. is_random : boolean, default False. Examples --------- - Random, add a random value between -0.2 and 0.2 as the offset to every hue values. >>> im_hue = tl.prepro.adjust_hue(image, hout=0.2, is_offset=True, is_random=False) - Non-random, make all hue to green. >>> im_green = tl.prepro.adjust_hue(image, hout=0.66, is_offset=False, is_random=False) References ----------- - `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`_. - `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`_. - `StackOverflow: Changing image hue with python PIL <https://stackoverflow.com/questions/7274221/changing-image-hue-with-python-pil>`_. """ hsv = rgb_to_hsv(im) if is_random: hout = np.random.uniform(-hout, hout) if is_offset: hsv[...,0] += hout else: hsv[...,0] = hout if is_clip: hsv[...,0] = np.clip(hsv[...,0], 0, np.inf) # Hao : can remove green dots rgb = hsv_to_rgb(hsv) return rgb # # contrast # def constant(x, cutoff=0.5, gain=10, inv=False, is_random=False): # # TODO # x = exposure.adjust_sigmoid(x, cutoff=cutoff, gain=gain, inv=inv) # return x # # def constant_multi(): # #TODO # pass # resize