Python sklearn.datasets 模块,make_moons() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用sklearn.datasets.make_moons()

项目:Gaussian_process    作者:happyjin    | 项目源码 | 文件源码
def dataset_generator():
    """
    generate dataset for binary classification
    :return:
    """
    X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                               random_state=1, n_clusters_per_class=1)
    rng = np.random.RandomState(2)
    X += 2 * rng.uniform(size=X.shape)
    linearly_separable = (X, y)

    datasets = [make_moons(noise=0.3, random_state=0),
                make_circles(noise=0.2, factor=0.5, random_state=1),
                linearly_separable
                ]

    X, y = datasets[0]
    y[y == 0] = -1
    X = StandardScaler().fit_transform(X)
    return X, y
项目:DBCV    作者:christopherjenness    | 项目源码 | 文件源码
def data():
    n_samples = 60
    noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05,
                                      random_state=1)
    X = noisy_moons[0]
    return X
项目:ML-From-Scratch    作者:eriklindernoren    | 项目源码 | 文件源码
def main():
    # Load the dataset
    X, y = datasets.make_moons(n_samples=300, noise=0.08, shuffle=False)

    # Cluster the data using DBSCAN
    clf = DBSCAN(eps=0.17, min_samples=5)
    y_pred = clf.predict(X)

    # Project the data onto the 2 primary principal components
    p = Plot()
    p.plot_in_2d(X, y_pred, title="DBSCAN")
    p.plot_in_2d(X, y, title="Actual Clustering")
项目:sdp_kmeans    作者:simonsfoundation    | 项目源码 | 文件源码
def moons():
    random_state = 0
    X, gt = sk_datasets.make_moons(n_samples=200, noise=.05,
                                   shuffle=False, random_state=random_state)
    return X, gt
项目:auxiliary-deep-generative-models    作者:larsmaaloee    | 项目源码 | 文件源码
def _download():
    train_x, train_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234)
    test_x, test_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234)
    valid_x, valid_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234)

    train_x += np.abs(train_x.min())
    test_x += np.abs(test_x.min())
    valid_x += np.abs(valid_x.min())

    train_set = (train_x, train_t)
    test_set = (test_x, test_t)
    valid_set = (valid_x, valid_t)

    return train_set, test_set, valid_set
项目:VAESSL    作者:lovecambi    | 项目源码 | 文件源码
def _download():
    train_x, train_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234)
    test_x, test_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234)
    valid_x, valid_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234)

    train_x += np.abs(train_x.min())
    test_x += np.abs(test_x.min())
    valid_x += np.abs(valid_x.min())

    train_set = (train_x, train_t)
    test_set = (test_x, test_t)
    valid_set = (valid_x, valid_t)

    return train_set, test_set, valid_set
项目:Machine-Learning-Algorithms    作者:YangMu1    | 项目源码 | 文件源码
def generate_data():
    np.random.seed(0)
    X, y = datasets.make_moons(200, noise=0.20)
    return X, y
项目:extract    作者:dblalock    | 项目源码 | 文件源码
def makeSimpleDatasets(n_samples=1500): # from sklearn example
    np.random.seed(0)
    # Generate datasets. We choose the size big enough to see the scalability
    # of the algorithms, but not too big to avoid too long running times
    n_samples = 1500
    noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,
                                          noise=.05)
    noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
    blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
    no_structure = np.random.rand(n_samples, 2), None

    return [noisy_circles, noisy_moons, blobs, no_structure]
项目:simec    作者:cod3licious    | 项目源码 | 文件源码
def classification(dataset=0):
    # generate training and test data
    n_train = 1000
    if dataset == 0:
        X, Y = make_classification(n_samples=n_train, n_features=2, n_redundant=0, n_informative=2,
                                   random_state=1, n_clusters_per_class=1)
        rng = np.random.RandomState(2)
        X += 2 * rng.uniform(size=X.shape)
        X_test, Y_test = make_classification(n_samples=50, n_features=2, n_redundant=0, n_informative=2,
                                             random_state=1, n_clusters_per_class=1)
        X_test += 2 * rng.uniform(size=X_test.shape)
    elif dataset == 1:
        X, Y = make_moons(n_samples=n_train, noise=0.3, random_state=0)
        X_test, Y_test = make_moons(n_samples=50, noise=0.3, random_state=1)
    elif dataset == 2:
        X, Y = make_circles(n_samples=n_train, noise=0.2, factor=0.5, random_state=1)
        X_test, Y_test = make_circles(n_samples=50, noise=0.2, factor=0.5, random_state=1)
    else:
        print("dataset unknown")
        return

    # build, train, and test the model
    model = SupervisedNNModel(X.shape[1], 2, hunits=[100, 50], activations=[T.tanh, T.tanh, T.nnet.softmax], cost_fun='negative_log_likelihood',
                              error_fun='zero_one_loss', learning_rate=0.01, L1_reg=0., L2_reg=0.)
    model.fit(X, Y)
    print("Test Error: %f" % model.score(X_test, Y_test))

    # plot dataset + predictions
    plt.figure()
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                         np.arange(y_min, y_max, 0.02))
    cm = plt.cm.RdBu
    cm_bright = ListedColormap(['#FF0000', '#0000FF'])

    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])[:, 1]

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap=cm, alpha=.8)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=cm_bright, alpha=0.6)
    # and testing points
    plt.scatter(X_test[:, 0], X_test[:, 1], c=Y_test, cmap=cm_bright)

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    plt.title('Classification Problem (%i)' % dataset)
项目:icnn    作者:locuslab    | 项目源码 | 文件源码
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--save', type=str, default='work')
    parser.add_argument('--nEpoch', type=int, default=100)
    # parser.add_argument('--testBatchSz', type=int, default=2048)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--model', type=str, default="picnn",
                        choices=['picnn', 'ficnn'])
    parser.add_argument('--dataset', type=str, default="moons",
                        choices=['moons', 'circles', 'linear'])
    parser.add_argument('--noncvx', action='store_true')

    args = parser.parse_args()

    npr.seed(args.seed)
    tf.set_random_seed(args.seed)

    setproctitle.setproctitle('bamos.icnn.synthetic.{}.{}'.format(args.model, args.dataset))

    save = os.path.join(os.path.expanduser(args.save),
                        "{}.{}".format(args.model, args.dataset))
    if os.path.isdir(save):
        shutil.rmtree(save)
    os.makedirs(save, exist_ok=True)

    if args.dataset == "moons":
        (dataX, dataY) = make_moons(noise=0.3, random_state=0)
    elif args.dataset == "circles":
        (dataX, dataY) = make_circles(noise=0.2, factor=0.5, random_state=0)
        dataY = 1.-dataY
    elif args.dataset == "linear":
        (dataX, dataY) = make_classification(n_features=2, n_redundant=0, n_informative=2,
                                             random_state=1, n_clusters_per_class=1)
        rng = np.random.RandomState(2)
        dataX += 2 * rng.uniform(size=dataX.shape)
    else:
        assert(False)

    dataY = dataY.reshape((-1, 1)).astype(np.float32)

    nData = dataX.shape[0]
    nFeatures = dataX.shape[1]
    nLabels = 1
    nXy = nFeatures + nLabels

    config = tf.ConfigProto() #log_device_placement=False)
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        model = Model(nFeatures, nLabels, sess, args.model, nGdIter=30)
        model.train(args, dataX, dataY)