我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用sklearn.linear_model.PassiveAggressiveRegressor()。
def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2)
def test_basic(self, single_chunk_regression): X, y = single_chunk_regression a = lm.PartialPassiveAggressiveRegressor(random_state=0, max_iter=100, tol=1e-3) b = lm_.PassiveAggressiveRegressor(random_state=0, max_iter=100, tol=1e-3) a.fit(X, y) b.partial_fit(X, y) assert_estimator_equal(a, b, exclude=['loss_function_'])
def train_sgd_regressor(): # Picking model return mp.ModelProperties(regression=True, online=True), linear_model.SGDRegressor() # http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html#sklearn.linear_model.PassiveAggressiveRegressor
def train_passive_aggressive_regressor(): # Picking model return mp.ModelProperties(regression=True, online=True), linear_model.PassiveAggressiveRegressor()
def test_isclassifier(self): model = PassiveAggressiveRegressor() message = 'This estimator is not a classifier; try a regression or clustering score visualizer instead!' classes = ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'] with self.assertRaisesRegexp(yellowbrick.exceptions.YellowbrickError, message): ConfusionMatrix(model, classes=classes)
def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7)
def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7)
def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)