Python sklearn.utils.extmath 模块,density() 实例源码

我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用sklearn.utils.extmath.density()

项目:NVDM-For-Document-Classification    作者:cryanzpj    | 项目源码 | 文件源码
def benchmark(clf, name = ""):
    print('_' * 80)
    print("Training: ")
    print(clf)
    t0 = time()
    clf.fit(X_train, y_train)
    train_time = time() - t0
    print("train time: %0.3fs" % train_time)

    t0 = time()
    if name == "kNN":
        pred = clf.predict(X_test[:200][:])
        score = metrics.f1_score(y_test[:200][:], pred, average=average_option)
    else:
        pred = clf.predict(X_test)
        score = metrics.f1_score(y_test, pred, average=average_option)
    test_time = time() - t0
    print("test time:  %0.3fs" % test_time)

    print("f1-score:   %0.3f" % score)

    if hasattr(clf, 'coef_'):
        print("dimensionality: %d" % clf.coef_.shape[1])
        print("density: %f" % density(clf.coef_))

        if opts.print_top10 and feature_names is not None:
            print("top 10 keywords per class:")
            for i, category in enumerate(categories):
                top10 = np.argsort(clf.coef_[i])[-10:]
                print(trim("%s: %s"
                      % (category, " ".join(feature_names[top10]))))
        print()

    if opts.print_cm:
        print("confusion matrix:")
        print(metrics.confusion_matrix(y_test, pred))
    print()
    clf_descr = str(clf).split('(')[1].split("=")[-1]
    return clf_descr, score, train_time, test_time
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def benchmark(clf):
    print('_' * 80)
    print("Training: ")
    print(clf)
    t0 = time()
    clf.fit(X_train, y_train)
    train_time = time() - t0
    print("train time: %0.3fs" % train_time)

    t0 = time()
    pred = clf.predict(X_test)
    test_time = time() - t0
    print("test time:  %0.3fs" % test_time)

    score = metrics.accuracy_score(y_test, pred)
    print("accuracy:   %0.3f" % score)

    if hasattr(clf, 'coef_'):
        print("dimensionality: %d" % clf.coef_.shape[1])
        print("density: %f" % density(clf.coef_))

        if opts.print_top10 and feature_names is not None:
            print("top 10 keywords per class:")
            for i, category in enumerate(categories):
                top10 = np.argsort(clf.coef_[i])[-10:]
                print(trim("%s: %s"
                      % (category, " ".join(feature_names[top10]))))
        print()

    if opts.print_report:
        print("classification report:")
        print(metrics.classification_report(y_test, pred,
                                            target_names=categories))

    if opts.print_cm:
        print("confusion matrix:")
        print(metrics.confusion_matrix(y_test, pred))

    print()
    clf_descr = str(clf).split('(')[0]
    return clf_descr, score, train_time, test_time
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_density():
    rng = np.random.RandomState(0)
    X = rng.randint(10, size=(10, 5))
    X[1, 2] = 0
    X[5, 3] = 0
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)
    X_coo = sparse.coo_matrix(X)
    X_lil = sparse.lil_matrix(X)

    for X_ in (X_csr, X_csc, X_coo, X_lil):
        assert_equal(density(X_), density(X))
项目:ShallowLearn    作者:giacbrd    | 项目源码 | 文件源码
def benchmark(clf):
    global train_duration, test_duration
    print('_' * 80)
    print("Training: ")
    print(clf)
    t0 = time()
    if isinstance(clf, (GensimFastText, FastText)):
        clf.fit(train_text, y_train)
        train_time = time() - t0
    else:
        clf.fit(X_train, y_train)
        train_time = train_duration + (time() - t0)
    print("train time: %0.3fs" % train_time)

    t0 = time()
    if isinstance(clf, (GensimFastText, FastText)):
        pred = clf.predict(test_text)
        test_time = time() - t0
        # fix unknown predictions
        pred = [most_freq if p is None else p for p in pred]
    else:
        pred = clf.predict(X_test)
        test_time = test_duration + (time() - t0)
    print("test time:  %0.3fs" % test_time)

    score = metrics.f1_score(y_test, pred, average='macro')
    print("macro F1:   %0.3f" % score)

    if hasattr(clf, 'coef_'):
        print("dimensionality: %d" % clf.coef_.shape[1])
        print("density: %f" % density(clf.coef_))

        if opts.print_top10 and feature_names is not None:
            print("top 10 keywords per class:")
            for i, category in enumerate(categories):
                top10 = np.argsort(clf.coef_[i])[-10:]
                print(trim("%s: %s"
                      % (category, " ".join(feature_names[top10]))))
        print()

    if opts.print_report:
        print("classification report:")
        print(metrics.classification_report(y_test, pred,
                                            target_names=categories))

    if opts.print_cm:
        print("confusion matrix:")
        print(metrics.confusion_matrix(y_test, pred))

    print()
    clf_descr = str(clf).split('(')[0]
    return clf_descr, score, train_time, test_time
项目:TwiBot    作者:ShruthiChari    | 项目源码 | 文件源码
def benchmark(clf):
    print('_' * 80)
    print("Training: ")
    print(clf)
    t0 = time()
    clf.fit(X_train, y_train)
    train_time = time() - t0
    print("train time: %0.3fs" % train_time)

    t0 = time()
    pred = clf.predict(X_test)
    test_time = time() - t0
    print(clf)
    print("test time:  %0.3fs" % test_time)

    score = metrics.f1_score(y_test, pred)
#    print("f1-score:   %0.3f" % score)

    print("Predicted classes:-")
    for element in range(9):
        print(listdir("/home/shrinidhi/tweeot/twitter_trials/twitter/testing/"+str(y_test[element])),": ",categories[pred[element]])

    '''if hasattr(clf, 'coef_'):
        print("dimensionality: %d" % clf.coef_.shape[1])
        print("density: %f" % density(clf.coef_))

        if opts.print_top10 and feature_names is not None:
            print("top 10 keywords per class:")
            for i, category in enumerate(categories):
                top10 = np.argsort(clf.coef_[i])[-10:]
                print(trim("%s: %s"
                      % (category, " ".join(feature_names[top10]))))
        print()

    if opts.print_report:
        print("classification report:")
        print(metrics.classification_report(y_test, pred,
                                            target_names=categories))

    if opts.print_cm:
        print("confusion matrix:")
        print(metrics.confusion_matrix(y_test, pred))

    print()'''
    clf_descr = str(clf).split('(')[0]
    return clf_descr, score, train_time, test_time