Python sympy 模块,cos() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用sympy.cos()

项目:quadpy    作者:nschloe    | 项目源码 | 文件源码
def __init__(self, n):
        self.degree = 2
        self.dim = n

        n2 = fr(n, 2) if n % 2 == 0 else fr(n-1, 2)
        pts = [[
            [sqrt(fr(2, n+2)) * cos(2*k*i*pi / (n+1)) for i in range(n+1)],
            [sqrt(fr(2, n+2)) * sin(2*k*i*pi / (n+1)) for i in range(n+1)],
            ] for k in range(1, n2+1)]
        if n % 2 == 1:
            sqrt3pm = numpy.full(n+1, 1/sqrt(n+2))
            sqrt3pm[1::2] *= -1
            pts.append(sqrt3pm)
        pts = numpy.vstack(pts).T

        data = [(fr(1, n+1), pts)]

        self.points, self.weights = untangle(data)
        self.weights *= volume_unit_ball(n)
        return
项目:pymoskito    作者:cklb    | 项目源码 | 文件源码
def test_lie_derivative(self):
        Lfh = pm.lie_derivatives(self.h, self.f, self.x, 0)
        self.assertEqual(Lfh, [self.h])

        Lfh = pm.lie_derivatives(self.h, self.f, self.x, 1)
        self.assertEqual(Lfh, [self.h,
                               sp.Matrix([-2*self._x1*self._x2**2
                                          - sp.sin(self._x1)*sp.cos(self._x2)])
                               ])
        Lfh = pm.lie_derivatives(self.h, self.f, self.x, 2)
        self.assertEqual(Lfh, [self.h,
                               sp.Matrix([-2*self._x1*self._x2**2
                                          - sp.sin(self._x1)*sp.cos(self._x2)]),
                               sp.Matrix([
                                   -self._x2**2*(
                                       -2*self._x2**2
                                       - sp.cos(self._x1)*sp.cos(self._x2)
                                   )
                                   + sp.sin(self._x1)*(
                                       - 4*self._x1*self._x2
                                       + sp.sin(self._x1)*sp.sin(self._x2)
                                   )])
                               ])
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_epath_apply():
    expr = [((x, 1, t), 2), ((3, y, 4), z)]
    func = lambda expr: expr**2

    assert epath("/*", expr, list) == [[(x, 1, t), 2], [(3, y, 4), z]]

    assert epath("/*/[0]", expr, list) == [([x, 1, t], 2), ([3, y, 4], z)]
    assert epath("/*/[1]", expr, func) == [((x, 1, t), 4), ((3, y, 4), z**2)]
    assert epath("/*/[2]", expr, list) == expr

    assert epath("/*/[0]/int", expr, func) == [((x, 1, t), 2), ((9, y, 16), z)]
    assert epath("/*/[0]/Symbol", expr, func) == [((x**2, 1, t**2), 2),
                 ((3, y**2, 4), z)]
    assert epath(
        "/*/[0]/int[1:]", expr, func) == [((x, 1, t), 2), ((3, y, 16), z)]
    assert epath("/*/[0]/Symbol[1:]", expr, func) == [((x, 1, t**2),
                 2), ((3, y**2, 4), z)]

    assert epath("/Symbol", x + y + z + 1, func) == x**2 + y**2 + z**2 + 1
    assert epath("/*/*/Symbol", t + sin(x + 1) + cos(x + y + E), func) == \
        t + sin(x**2 + 1) + cos(x**2 + y**2 + E)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_sqrt_symbolic_denest():
    x = Symbol('x')
    z = sqrt(((1 + sqrt(sqrt(2 + x) + 3))**2).expand())
    assert sqrtdenest(z) == sqrt((1 + sqrt(sqrt(2 + x) + 3))**2)
    z = sqrt(((1 + sqrt(sqrt(2 + cos(1)) + 3))**2).expand())
    assert sqrtdenest(z) == 1 + sqrt(sqrt(2 + cos(1)) + 3)
    z = ((1 + cos(2))**4 + 1).expand()
    assert sqrtdenest(z) == z
    z = sqrt(((1 + sqrt(sqrt(2 + cos(3*x)) + 3))**2 + 1).expand())
    assert sqrtdenest(z) == z
    c = cos(3)
    c2 = c**2
    assert sqrtdenest(sqrt(2*sqrt(1 + r3)*c + c2 + 1 + r3*c2)) == \
        -1 - sqrt(1 + r3)*c
    ra = sqrt(1 + r3)
    z = sqrt(20*ra*sqrt(3 + 3*r3) + 12*r3*ra*sqrt(3 + 3*r3) + 64*r3 + 112)
    assert sqrtdenest(z) == z
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def equation(self, type='cosine'):
        """
        Returns equation of the wave.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.equation('cosine')
        A*cos(2*pi*f*t + phi)
        """
        if not isinstance(type, str):
            raise TypeError("type can only be a string.")
        if type == 'cosine':
            return self._amplitude*cos(self.angular_velocity*Symbol('t') + self._phase)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_twave():
    A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
    c = Symbol('c')  # Speed of light in vacuum
    n = Symbol('n')  # Refractive index
    t = Symbol('t')  # Time
    w1 = TWave(A1, f, phi1)
    w2 = TWave(A2, f, phi2)
    assert w1.amplitude == A1
    assert w1.frequency == f
    assert w1.phase == phi1
    assert w1.wavelength == c/(f*n)
    assert w1.time_period == 1/f
    w3 = w1 + w2
    assert w3.amplitude == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
    assert w3.frequency == f
    assert w3.wavelength == c/(f*n)
    assert w3.time_period == 1/f
    assert w3.angular_velocity == 2*pi*f
    assert w3.equation() == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)*cos(2*pi*f*t + phi1 + phi2)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_dot_different_frames():
    assert dot(N.x, A.x) == cos(q1)
    assert dot(N.x, A.y) == -sin(q1)
    assert dot(N.x, A.z) == 0
    assert dot(N.y, A.x) == sin(q1)
    assert dot(N.y, A.y) == cos(q1)
    assert dot(N.y, A.z) == 0
    assert dot(N.z, A.x) == 0
    assert dot(N.z, A.y) == 0
    assert dot(N.z, A.z) == 1

    assert dot(N.x, A.x + A.y) == sqrt(2)*cos(q1 + pi/4) == dot(A.x + A.y, N.x)

    assert dot(A.x, C.x) == cos(q3)
    assert dot(A.x, C.y) == 0
    assert dot(A.x, C.z) == sin(q3)
    assert dot(A.y, C.x) == sin(q2)*sin(q3)
    assert dot(A.y, C.y) == cos(q2)
    assert dot(A.y, C.z) == -sin(q2)*cos(q3)
    assert dot(A.z, C.x) == -cos(q2)*sin(q3)
    assert dot(A.z, C.y) == sin(q2)
    assert dot(A.z, C.z) == cos(q2)*cos(q3)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_cross_different_frames():
    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.z) == -sin(q1)*A.x - cos(q1)*A.y
    assert cross(N.y, A.x) == -cos(q1)*A.z
    assert cross(N.y, A.y) == sin(q1)*A.z
    assert cross(N.y, A.z) == cos(q1)*A.x - sin(q1)*A.y
    assert cross(N.z, A.x) == A.y
    assert cross(N.z, A.y) == -A.x
    assert cross(N.z, A.z) == 0

    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.x + A.y) == sin(q1)*A.z + cos(q1)*A.z
    assert cross(A.x + A.y, N.x) == -sin(q1)*A.z - cos(q1)*A.z

    assert cross(A.x, C.x) == sin(q3)*C.y
    assert cross(A.x, C.y) == -sin(q3)*C.x + cos(q3)*C.z
    assert cross(A.x, C.z) == -cos(q3)*C.y
    assert cross(C.x, A.x) == -sin(q3)*C.y
    assert cross(C.y, A.x) == sin(q3)*C.x - cos(q3)*C.z
    assert cross(C.z, A.x) == cos(q3)*C.y
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_partial_velocity():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    u4, u5 = dynamicsymbols('u4, u5')
    r = symbols('r')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert (partial_velocity(vel_list, u_list, N) ==
            [[- r*L.y, r*L.x, 0, L.x, cos(q2)*L.y - sin(q2)*L.z],
            [0, 0, 0, L.x, cos(q2)*L.y - sin(q2)*L.z],
            [L.x, L.y, L.z, 0, 0]])
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_expand():
    m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
    # Test if expand() returns a matrix
    m1 = m0.expand()
    assert m1 == Matrix(
        [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])

    a = Symbol('a', real=True)

    assert Matrix([exp(I*a)]).expand(complex=True) == \
        Matrix([cos(a) + I*sin(a)])

    assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([
        [1, 1, Rational(3, 2)],
        [0, 1, -1],
        [0, 0, 1]]
    )
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_simplify():
    f, n = symbols('f, n')

    m = Matrix([[1, x], [x + 1/x, x - 1]])
    m = m.row_join(eye(m.cols))
    raw = m.rref(simplify=lambda x: x)[0]
    assert raw != m.rref(simplify=True)[0]

    M = Matrix([[            1/x + 1/y,                 (x + x*y) / x  ],
                [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]])
    M.simplify()
    assert M == Matrix([[ (x + y)/(x * y),                        1 + y ],
                        [           1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]])
    eq = (1 + x)**2
    M = Matrix([[eq]])
    M.simplify()
    assert M == Matrix([[eq]])
    M.simplify(ratio=oo) == M
    assert M == Matrix([[eq.simplify(ratio=oo)]])
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_rotation_matrices():
    # This tests the rotation matrices by rotating about an axis and back.
    theta = pi/3
    r3_plus = rot_axis3(theta)
    r3_minus = rot_axis3(-theta)
    r2_plus = rot_axis2(theta)
    r2_minus = rot_axis2(-theta)
    r1_plus = rot_axis1(theta)
    r1_minus = rot_axis1(-theta)
    assert r3_minus*r3_plus*eye(3) == eye(3)
    assert r2_minus*r2_plus*eye(3) == eye(3)
    assert r1_minus*r1_plus*eye(3) == eye(3)

    # Check the correctness of the trace of the rotation matrix
    assert r1_plus.trace() == 1 + 2*cos(theta)
    assert r2_plus.trace() == 1 + 2*cos(theta)
    assert r3_plus.trace() == 1 + 2*cos(theta)

    # Check that a rotation with zero angle doesn't change anything.
    assert rot_axis1(0) == eye(3)
    assert rot_axis2(0) == eye(3)
    assert rot_axis3(0) == eye(3)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_Znm():
    # http://en.wikipedia.org/wiki/Solid_harmonics#List_of_lowest_functions
    th, ph = Symbol("theta", real=True), Symbol("phi", real=True)
    from sympy.abc import n,m

    assert Znm(0, 0, th, ph) == Ynm(0, 0, th, ph)
    assert Znm(1, -1, th, ph) == (-sqrt(2)*I*(Ynm(1, 1, th, ph)
                                  - exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(1, 0, th, ph) == Ynm(1, 0, th, ph)
    assert Znm(1, 1, th, ph) == (sqrt(2)*(Ynm(1, 1, th, ph)
                                 + exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi))
    assert Znm(1, -1, th, ph).expand(func=True) == (sqrt(3)*I*sqrt(-cos(th)**2 + 1)*exp(I*ph)/(4*sqrt(pi))
                                                    - sqrt(3)*I*sqrt(-cos(th)**2 + 1)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi))
    assert Znm(1, 1, th, ph).expand(func=True) == (-sqrt(3)*sqrt(-cos(th)**2 + 1)*exp(I*ph)/(4*sqrt(pi))
                                                   - sqrt(3)*sqrt(-cos(th)**2 + 1)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(2, -1, th, ph).expand(func=True) == (sqrt(15)*I*sqrt(-cos(th)**2 + 1)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                    - sqrt(15)*I*sqrt(-cos(th)**2 + 1)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
    assert Znm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi))
    assert Znm(2, 1, th, ph).expand(func=True) == (-sqrt(15)*sqrt(-cos(th)**2 + 1)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                   - sqrt(15)*sqrt(-cos(th)**2 + 1)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_function_series1():
    """Create our new "sin" function."""

    class my_function(Function):

        def fdiff(self, argindex=1):
            return cos(self.args[0])

        @classmethod
        def eval(cls, arg):
            arg = sympify(arg)
            if arg == 0:
                return sympify(0)

    #Test that the taylor series is correct
    assert my_function(x).series(x, 0, 10) == sin(x).series(x, 0, 10)
    assert limit(my_function(x)/x, x, 0) == 1
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_function_series2():
    """Create our new "cos" function."""

    class my_function2(Function):

        def fdiff(self, argindex=1):
            return -sin(self.args[0])

        @classmethod
        def eval(cls, arg):
            arg = sympify(arg)
            if arg == 0:
                return sympify(1)

    #Test that the taylor series is correct
    assert my_function2(x).series(x, 0, 10) == cos(x).series(x, 0, 10)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_piecewise_fold_piecewise_in_cond():
    p1 = Piecewise((cos(x), x < 0), (0, True))
    p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
    p3 = piecewise_fold(p2)
    assert(p2.subs(x, -pi/2) == 0.0)
    assert(p2.subs(x, 1) == 0.0)
    assert(p2.subs(x, -pi/4) == 1.0)
    p4 = Piecewise((0, Eq(p1, 0)), (1,True))
    assert(piecewise_fold(p4) == Piecewise(
        (0, Or(And(Eq(cos(x), 0), x < 0), Not(x < 0))), (1, True)))

    r1 = 1 < Piecewise((1, x < 1), (3, True))
    assert(piecewise_fold(r1) == Not(x < 1))

    p5 = Piecewise((1, x < 0), (3, True))
    p6 = Piecewise((1, x < 1), (3, True))
    p7 = piecewise_fold(Piecewise((1, p5 < p6), (0, True)))
    assert(Piecewise((1, And(Not(x < 1), x < 0)), (0, True)))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def _compute_transform(self, F, s, x, **hints):
        from sympy import postorder_traversal
        global _allowed
        if _allowed is None:
            from sympy import (
                exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh,
                coth, factorial, rf)
            _allowed = set(
                [exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth,
                 factorial, rf])
        for f in postorder_traversal(F):
            if f.is_Function and f.has(s) and f.func not in _allowed:
                raise IntegralTransformError('Inverse Mellin', F,
                                     'Component %s not recognised.' % f)
        strip = self.fundamental_strip
        return _inverse_mellin_transform(F, s, x, strip, **hints)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True):
    """
    Compute a general sine or cosine-type transform
        F(k) = a int_0^oo b*sin(x*k) f(x) dx.
        F(k) = a int_0^oo b*cos(x*k) f(x) dx.

    For suitable choice of a and b, this reduces to the standard sine/cosine
    and inverse sine/cosine transforms.
    """
    F = integrate(a*f*K(b*x*k), (x, 0, oo))

    if not F.has(Integral):
        return _simplify(F, simplify), True

    if not F.is_Piecewise:
        raise IntegralTransformError(name, f, 'could not compute integral')

    F, cond = F.args[0]
    if F.has(Integral):
        raise IntegralTransformError(name, f, 'integral in unexpected form')

    return _simplify(F, simplify), cond
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def trig_tansec_rule(integral):
    integrand, symbol = integral

    integrand = integrand.subs({
        1 / sympy.cos(symbol): sympy.sec(symbol)
    })

    if any(integrand.has(f) for f in (sympy.tan, sympy.sec)):
        pattern, a, b, m, n = tansec_pattern(symbol)
        match = integrand.match(pattern)

        if match:
            a, b, m, n = match.get(a, 0),match.get(b, 0), match.get(m, 0), match.get(n, 0)
            return multiplexer({
                tansec_tanodd_condition: tansec_tanodd,
                tansec_seceven_condition: tansec_seceven,
                tan_tansquared_condition: tan_tansquared
            })((a, b, m, n, integrand, symbol))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def trig_cotcsc_rule(integral):
    integrand, symbol = integral
    integrand = integrand.subs({
        1 / sympy.sin(symbol): sympy.csc(symbol),
        1 / sympy.tan(symbol): sympy.cot(symbol),
        sympy.cos(symbol) / sympy.tan(symbol): sympy.cot(symbol)
    })

    if any(integrand.has(f) for f in (sympy.cot, sympy.csc)):
        pattern, a, b, m, n = cotcsc_pattern(symbol)
        match = integrand.match(pattern)

        if match:
            a, b, m, n = match.get(a, 0),match.get(b, 0), match.get(m, 0), match.get(n, 0)
            return multiplexer({
                cotcsc_cotodd_condition: cotcsc_cotodd,
                cotcsc_csceven_condition: cotcsc_csceven
            })((a, b, m, n, integrand, symbol))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_output_arg_c():
    from sympy import sin, cos, Equality
    x, y, z = symbols("x,y,z")
    r = Routine("foo", [Equality(y, sin(x)), cos(x)])
    c = CCodeGen()
    result = c.write([r], "test", header=False, empty=False)
    assert result[0][0] == "test.c"
    expected = (
        '#include "test.h"\n'
        '#include <math.h>\n'
        'double foo(double x, double &y) {\n'
        '   y = sin(x);\n'
        '   return cos(x);\n'
        '}\n'
    )
    assert result[0][1] == expected
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_output_arg_f():
    from sympy import sin, cos, Equality
    x, y, z = symbols("x,y,z")
    r = Routine("foo", [Equality(y, sin(x)), cos(x)])
    c = FCodeGen()
    result = c.write([r], "test", header=False, empty=False)
    assert result[0][0] == "test.f90"
    assert result[0][1] == (
        'REAL*8 function foo(x, y)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(out) :: y\n'
        'y = sin(x)\n'
        'foo = cos(x)\n'
        'end function\n'
    )
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def derivatives_in_spherical_coordinates():
    Print_Function()
    X = (r, th, phi) = symbols('r theta phi')
    curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]]
    (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad*f)
    print('grad|A =', grad | A)
    print('-I*(grad^A) =', -MV.I*(grad ^ A))
    print('grad^B =', grad ^ B)
    return
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def derivatives_in_spherical_coordinates():
    Print_Function()
    X = (r, th, phi) = symbols('r theta phi')
    curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]]
    (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad*f)
    print('grad|A =', grad | A)
    print('-I*(grad^A) =', (-MV.I*(grad ^ A)).simplify())
    print('grad^B =', grad ^ B)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def main():
    x = sympy.Symbol('x')
    y = sympy.Symbol('y')

    e = 1/sympy.cos(x)
    print()
    pprint(e)
    print('\n')
    pprint(e.subs(sympy.cos(x), y))
    print('\n')
    pprint(e.subs(sympy.cos(x), y).subs(y, x**2))

    e = 1/sympy.log(x)
    e = e.subs(x, sympy.Float("2.71828"))
    print('\n')
    pprint(e)
    print('\n')
    pprint(e.evalf())
    print()
项目:qiskit-sdk-py    作者:QISKit    | 项目源码 | 文件源码
def real(self, nested_scope=None):
        """Return the correspond floating point number."""
        op = self.children[0].name
        expr = self.children[1]
        dispatch = {
            'sin': sympy.sin,
            'cos': sympy.cos,
            'tan': sympy.tan,
            'asin': sympy.asin,
            'acos': sympy.acos,
            'atan': sympy.atan,
            'exp': sympy.exp,
            'ln': sympy.log,
            'sqrt': sympy.sqrt
        }
        if op in dispatch:
            arg = expr.real(nested_scope)
            return dispatch[op](arg)
        else:
            raise NodeException("internal error: undefined external")
项目:qiskit-sdk-py    作者:QISKit    | 项目源码 | 文件源码
def sym(self, nested_scope=None):
        """Return the corresponding symbolic expression."""
        op = self.children[0].name
        expr = self.children[1]
        dispatch = {
            'sin': sympy.sin,
            'cos': sympy.cos,
            'tan': sympy.tan,
            'asin': sympy.asin,
            'acos': sympy.acos,
            'atan': sympy.atan,
            'exp': sympy.exp,
            'ln': sympy.log,
            'sqrt': sympy.sqrt
        }
        if op in dispatch:
            arg = expr.sym(nested_scope)
            return dispatch[op](arg)
        else:
            raise NodeException("internal error: undefined external")
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def two_wheel_2d_model(x, u, dt):
    """Two wheel 2D motion model

    Parameters
    ----------
    x :

    u :

    dt :


    Returns
    -------

    """
    gdot = np.array([[u[0, 0] * cos(x[2, 0]) * dt],
                     [u[0, 0] * sin(x[2, 0]) * dt],
                     [u[1, 0] * dt]])

    return x + gdot
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def two_wheel_3d_model(x, u, dt):
    """Two wheel 3D motion model

    Parameters
    ----------
    x :

    u :

    dt :


    Returns
    -------

    """
    g1 = x[0, 0] + u[0] * cos(x[3, 0]) * dt
    g2 = x[1, 0] + u[0] * sin(x[3, 0]) * dt
    g3 = x[2, 0] + u[1] * dt
    g4 = x[3, 0] + u[2] * dt

    return np.array([g1, g2, g3, g4])
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def two_wheel_3d_deriv():
    """ """
    x1, x2, x3, x4, x5, x6, x7 = sympy.symbols("x1,x2,x3,x4,x5,x6,x7")
    dt = sympy.symbols("dt")

    # x1 - x
    # x2 - y
    # x3 - z
    # x4 - theta
    # x5 - v
    # x6 - omega
    # x7 - vz

    # x, y, z, theta, v, omega, vz
    f1 = x1 + x5 * sympy.cos(x4) * dt
    f2 = x2 + x5 * sympy.sin(x4) * dt
    f3 = x3 + x7 * dt
    f4 = x4 + x6 * dt
    f5 = x5
    f6 = x6
    f7 = x7

    F = sympy.Matrix([f1, f2, f3, f4, f5, f6, f7])
    pprint(F.jacobian([x1, x2, x3, x4, x5, x6, x7]))
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def linearity_index_inverse_depth():
    """Linearity index of Inverse Depth Parameterization"""
    D, rho, rho_0, d_1, sigma_rho = sympy.symbols("D,rho,rho_0,d_1,sigma_rho")
    alpha = sympy.symbols("alpha")
    u = (rho * sympy.sin(alpha)) / (rho_0 * d_1 * (rho_0 - rho) + rho * sympy.cos(alpha))  # NOQA

    # first order derivative of u
    u_p = sympy.diff(u, rho)
    u_p = sympy.simplify(u_p)

    # second order derivative of u
    u_pp = sympy.diff(u_p, rho)
    u_pp = sympy.simplify(u_pp)

    # Linearity index
    L = (u_pp * 2 * sigma_rho) / (u_p)
    L = sympy.simplify(L)

    print()
    print("u: ", u)
    print("u': ", u_p)
    print("u'': ", u_pp)
    # print("L = ", L)
    print("L = ", L.subs(rho, 0))
    print()
项目:pyccel    作者:ratnania    | 项目源码 | 文件源码
def compute_stencil(order, n, x_value, h_value, x0=0.):
    """
    computes a stencil of Order order
    """
    h,x = symbols('h x')
    xs = [x+h*cos(i*pi/n) for i in range(n,-1,-1)]
    cs = finite_diff_weights(order, xs, x0)[order][n]
    cs = [simplify(c) for c in cs]

    cs = [simplify(expr.subs(h, h_value)) for expr in cs]
    xs = [simplify(expr.subs(h, h_value)) for expr in xs]

    cs = [simplify(expr.subs(x, x_value)) for expr in cs]
    xs = [simplify(expr.subs(x, x_value)) for expr in xs]

    return xs, cs

##############################################
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_epath_apply():
    expr = [((x, 1, t), 2), ((3, y, 4), z)]
    func = lambda expr: expr**2

    assert epath("/*", expr, list) == [[(x, 1, t), 2], [(3, y, 4), z]]

    assert epath("/*/[0]", expr, list) == [([x, 1, t], 2), ([3, y, 4], z)]
    assert epath("/*/[1]", expr, func) == [((x, 1, t), 4), ((3, y, 4), z**2)]
    assert epath("/*/[2]", expr, list) == expr

    assert epath("/*/[0]/int", expr, func) == [((x, 1, t), 2), ((9, y, 16), z)]
    assert epath("/*/[0]/Symbol", expr, func) == [((x**2, 1, t**2), 2),
                 ((3, y**2, 4), z)]
    assert epath(
        "/*/[0]/int[1:]", expr, func) == [((x, 1, t), 2), ((3, y, 16), z)]
    assert epath("/*/[0]/Symbol[1:]", expr, func) == [((x, 1, t**2),
                 2), ((3, y**2, 4), z)]

    assert epath("/Symbol", x + y + z + 1, func) == x**2 + y**2 + z**2 + 1
    assert epath("/*/*/Symbol", t + sin(x + 1) + cos(x + y + E), func) == \
        t + sin(x**2 + 1) + cos(x**2 + y**2 + E)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_pow_eval():
    # XXX Pow does not fully support conversion of negative numbers
    #     to their complex equivalent

    assert sqrt(-1) == I

    assert sqrt(-4) == 2*I
    assert sqrt( 4) == 2
    assert (8)**Rational(1, 3) == 2
    assert (-8)**Rational(1, 3) == 2*((-1)**Rational(1, 3))

    assert sqrt(-2) == I*sqrt(2)
    assert (-1)**Rational(1, 3) != I
    assert (-10)**Rational(1, 3) != I*((10)**Rational(1, 3))
    assert (-2)**Rational(1, 4) != (2)**Rational(1, 4)

    assert 64**Rational(1, 3) == 4
    assert 64**Rational(2, 3) == 16
    assert 24/sqrt(64) == 3
    assert (-27)**Rational(1, 3) == 3*(-1)**Rational(1, 3)

    assert (cos(2) / tan(2))**2 == (cos(2) / tan(2))**2
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def _eval_power(self, expt):
        """
        b is I = sqrt(-1)
        e is symbolic object but not equal to 0, 1

        I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
        I**0 mod 4 -> 1
        I**1 mod 4 -> I
        I**2 mod 4 -> -1
        I**3 mod 4 -> -I
        """

        if isinstance(expt, Number):
            if isinstance(expt, Integer):
                expt = expt.p % 4
                if expt == 0:
                    return S.One
                if expt == 1:
                    return S.ImaginaryUnit
                if expt == 2:
                    return -S.One
                return -S.ImaginaryUnit
            return (S.NegativeOne)**(expt*S.Half)
        return
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_dot_different_frames():
    assert dot(N.x, A.x) == cos(q1)
    assert dot(N.x, A.y) == -sin(q1)
    assert dot(N.x, A.z) == 0
    assert dot(N.y, A.x) == sin(q1)
    assert dot(N.y, A.y) == cos(q1)
    assert dot(N.y, A.z) == 0
    assert dot(N.z, A.x) == 0
    assert dot(N.z, A.y) == 0
    assert dot(N.z, A.z) == 1

    assert dot(N.x, A.x + A.y) == sqrt(2)*cos(q1 + pi/4) == dot(A.x + A.y, N.x)

    assert dot(A.x, C.x) == cos(q3)
    assert dot(A.x, C.y) == 0
    assert dot(A.x, C.z) == sin(q3)
    assert dot(A.y, C.x) == sin(q2)*sin(q3)
    assert dot(A.y, C.y) == cos(q2)
    assert dot(A.y, C.z) == -sin(q2)*cos(q3)
    assert dot(A.z, C.x) == -cos(q2)*sin(q3)
    assert dot(A.z, C.y) == sin(q2)
    assert dot(A.z, C.z) == cos(q2)*cos(q3)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_cross_different_frames():
    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.z) == -sin(q1)*A.x - cos(q1)*A.y
    assert cross(N.y, A.x) == -cos(q1)*A.z
    assert cross(N.y, A.y) == sin(q1)*A.z
    assert cross(N.y, A.z) == cos(q1)*A.x - sin(q1)*A.y
    assert cross(N.z, A.x) == A.y
    assert cross(N.z, A.y) == -A.x
    assert cross(N.z, A.z) == 0

    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.x + A.y) == sin(q1)*A.z + cos(q1)*A.z
    assert cross(A.x + A.y, N.x) == -sin(q1)*A.z - cos(q1)*A.z

    assert cross(A.x, C.x) == sin(q3)*C.y
    assert cross(A.x, C.y) == -sin(q3)*C.x + cos(q3)*C.z
    assert cross(A.x, C.z) == -cos(q3)*C.y
    assert cross(C.x, A.x) == -sin(q3)*C.y
    assert cross(C.y, A.x) == sin(q3)*C.x - cos(q3)*C.z
    assert cross(C.z, A.x) == cos(q3)*C.y
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_expand():
    m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
    # Test if expand() returns a matrix
    m1 = m0.expand()
    assert m1 == Matrix(
        [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])

    a = Symbol('a', real=True)

    assert Matrix([exp(I*a)]).expand(complex=True) == \
        Matrix([cos(a) + I*sin(a)])

    assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([
        [1, 1, Rational(3, 2)],
        [0, 1, -1],
        [0, 0, 1]]
    )
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_condition_number():
    x = Symbol('x', real=True)
    A = eye(3)
    A[0, 0] = 10
    A[2, 2] = S(1)/10
    assert A.condition_number() == 100

    A[1, 1] = x
    assert A.condition_number() == Max(10, Abs(x)) / Min(S(1)/10, Abs(x))

    M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]])
    Mc = M.condition_number()
    assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in
        [Rational(1, 5), Rational(1, 2), Rational(1, 10), pi/2, pi, 7*pi/4 ])

    #issue 10782
    assert Matrix([]).condition_number() == 0
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_derivative_by_array():
    from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

    bexpr = x*y**2*exp(z)*log(t)
    sexpr = sin(bexpr)
    cexpr = cos(bexpr)

    a = Array([sexpr])

    assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
    assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
    assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])

    assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
    assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
    assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
    assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
                                                                         [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_Znm():
    # http://en.wikipedia.org/wiki/Solid_harmonics#List_of_lowest_functions
    th, ph = Symbol("theta", real=True), Symbol("phi", real=True)

    assert Znm(0, 0, th, ph) == Ynm(0, 0, th, ph)
    assert Znm(1, -1, th, ph) == (-sqrt(2)*I*(Ynm(1, 1, th, ph)
                                  - exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(1, 0, th, ph) == Ynm(1, 0, th, ph)
    assert Znm(1, 1, th, ph) == (sqrt(2)*(Ynm(1, 1, th, ph)
                                 + exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi))
    assert Znm(1, -1, th, ph).expand(func=True) == (sqrt(3)*I*sin(th)*exp(I*ph)/(4*sqrt(pi))
                                                    - sqrt(3)*I*sin(th)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi))
    assert Znm(1, 1, th, ph).expand(func=True) == (-sqrt(3)*sin(th)*exp(I*ph)/(4*sqrt(pi))
                                                   - sqrt(3)*sin(th)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(2, -1, th, ph).expand(func=True) == (sqrt(15)*I*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                    - sqrt(15)*I*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
    assert Znm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi))
    assert Znm(2, 1, th, ph).expand(func=True) == (-sqrt(15)*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                   - sqrt(15)*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_function_series2():
    """Create our new "cos" function."""

    class my_function2(Function):

        def fdiff(self, argindex=1):
            return -sin(self.args[0])

        @classmethod
        def eval(cls, arg):
            arg = sympify(arg)
            if arg == 0:
                return sympify(1)

    #Test that the taylor series is correct
    assert my_function2(x).series(x, 0, 10) == cos(x).series(x, 0, 10)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_piecewise_fold_piecewise_in_cond():
    p1 = Piecewise((cos(x), x < 0), (0, True))
    p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
    p3 = piecewise_fold(p2)
    assert(p2.subs(x, -pi/2) == 0.0)
    assert(p2.subs(x, 1) == 0.0)
    assert(p2.subs(x, -pi/4) == 1.0)
    p4 = Piecewise((0, Eq(p1, 0)), (1,True))
    assert(piecewise_fold(p4) == Piecewise(
        (0, Or(And(Eq(cos(x), 0), x < 0), Not(x < 0))), (1, True)))

    r1 = 1 < Piecewise((1, x < 1), (3, True))
    assert(piecewise_fold(r1) == Not(x < 1))

    p5 = Piecewise((1, x < 0), (3, True))
    p6 = Piecewise((1, x < 1), (3, True))
    p7 = piecewise_fold(Piecewise((1, p5 < p6), (0, True)))
    assert(Piecewise((1, And(Not(x < 1), x < 0)), (0, True)))
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def as_real_imag(self, deep=True, **hints):
        """
        Returns this function as a complex coordinate.
        """
        from sympy import cos, sin
        if self.args[0].is_real:
            if deep:
                hints['complex'] = False
                return (self.expand(deep, **hints), S.Zero)
            else:
                return (self, S.Zero)
        if deep:
            re, im = self.args[0].expand(deep, **hints).as_real_imag()
        else:
            re, im = self.args[0].as_real_imag()
        return (sinh(re)*cos(im), cosh(re)*sin(im))
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True):
    """
    Compute a general sine or cosine-type transform
        F(k) = a int_0^oo b*sin(x*k) f(x) dx.
        F(k) = a int_0^oo b*cos(x*k) f(x) dx.

    For suitable choice of a and b, this reduces to the standard sine/cosine
    and inverse sine/cosine transforms.
    """
    F = integrate(a*f*K(b*x*k), (x, 0, oo))

    if not F.has(Integral):
        return _simplify(F, simplify), True

    if not F.is_Piecewise:
        raise IntegralTransformError(name, f, 'could not compute integral')

    F, cond = F.args[0]
    if F.has(Integral):
        raise IntegralTransformError(name, f, 'integral in unexpected form')

    return _simplify(F, simplify), cond
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_issue_4892a():
    A, z = symbols('A z')
    c = Symbol('c', nonzero=True)
    P1 = -A*exp(-z)
    P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)

    h1 = -sin(x)**2 - cos(y)**2
    h2 = -sin(x)**2 + sin(y)**2 - 1

    # there is still some non-deterministic behavior in integrate
    # or trigsimp which permits one of the following
    assert integrate(c*(P2 - P1), t) in [
        c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
        c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
        c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
        c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
        (A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
        (A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
    ]
项目:quadpy    作者:nschloe    | 项目源码 | 文件源码
def __init__(self, n, index):
        self.dim = n
        if index == 2:
            self.degree = 2
            r = sqrt(3) / 6
            data = [
                (1.0, numpy.array([numpy.full(n, 2*r)])),
                (+r, _s(n, -1, r)),
                (-r, _s(n, +1, r)),
                ]
        else:
            assert index == 3
            self.degree = 3
            n2 = n // 2 if n % 2 == 0 else (n-1)//2
            i_range = range(1, 2*n+1)
            pts = [[
                [sqrt(fr(2, 3)) * cos((2*k-1)*i*pi / n) for i in i_range],
                [sqrt(fr(2, 3)) * sin((2*k-1)*i*pi / n) for i in i_range],
                ] for k in range(1, n2+1)]
            if n % 2 == 1:
                sqrt3pm = numpy.full(2*n, 1/sqrt(3))
                sqrt3pm[1::2] *= -1
                pts.append(sqrt3pm)
            pts = numpy.vstack(pts).T

            data = [(fr(1, 2*n), pts)]

        self.points, self.weights = untangle(data)
        reference_volume = 2**n
        self.weights *= reference_volume
        return
项目:quadpy    作者:nschloe    | 项目源码 | 文件源码
def __init__(self, n):
        self.weights = numpy.full(n, 2*sympy.pi/n)
        self.points = numpy.column_stack([
            [sympy.cos(sympy.pi * sympy.Rational(2*k, n)) for k in range(n)],
            [sympy.sin(sympy.pi * sympy.Rational(2*k, n)) for k in range(n)],
            ])
        self.degree = n - 1
        return
项目:quadpy    作者:nschloe    | 项目源码 | 文件源码
def _gen4_1():
    pts = 2 * sqrt(5) * numpy.array([
        [cos(2*i*pi/5) for i in range(5)],
        [sin(2*i*pi/5) for i in range(5)],
        ]).T
    data = [
        (fr(7, 10), numpy.array([[0, 0]])),
        (fr(3, 50), pts),
        ]
    return 4, data


# The boolean tells whether the factor 2*pi is already in the weights