Python tensorflow.python.framework.ops 模块,op_scope() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.python.framework.ops.op_scope()。
def adjust_hue(image, delta, name=None):
with ops.op_scope([image], name, 'adjust_hue') as name:
# Remember original dtype to so we can convert back if needed
orig_dtype = image.dtype
flt_image = tf.image.convert_image_dtype(image, tf.float32)
hsv = gen_image_ops.rgb_to_hsv(flt_image)
hue = tf.slice(hsv, [0, 0, 0, 0], [-1, -1, -1, 1])
saturation = tf.slice(hsv, [0, 0, 0, 1], [-1, -1, -1, 1])
value = tf.slice(hsv, [0, 0, 0, 2], [-1, -1, -1, 1])
# Note that we add 2*pi to guarantee that the resulting hue is a positive
# floating point number since delta is [-0.5, 0.5].
hue = math_ops.mod(hue + (delta + 1.), 1.)
hsv_altered = tf.concat(3, [hue, saturation, value])
rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
return tf.image.convert_image_dtype(rgb_altered, orig_dtype)
def adjust_saturation(image, saturation_factor, name=None):
with ops.op_scope([image], name, 'adjust_saturation') as name:
# Remember original dtype to so we can convert back if needed
orig_dtype = image.dtype
flt_image = tf.image.convert_image_dtype(image, tf.float32)
hsv = gen_image_ops.rgb_to_hsv(flt_image)
hue = tf.slice(hsv, [0, 0, 0, 0], [-1, -1, -1, 1])
saturation = tf.slice(hsv, [0, 0, 0, 1], [-1, -1, -1, 1])
value = tf.slice(hsv, [0, 0, 0, 2], [-1, -1, -1, 1])
saturation *= saturation_factor
saturation = clip_ops.clip_by_value(saturation, 0.0, 1.0)
hsv_altered = tf.concat(3, [hue, saturation, value])
rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
return tf.image.convert_image_dtype(rgb_altered, orig_dtype)
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
'''Computes binary cross entropy given `preds`.
Let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
'''
eps = 1e-12
with ops.op_scope([preds, targets], name, 'bce_loss') as name:
preds = ops.convert_to_tensor(preds, name='preds')
targets = ops.convert_to_tensor(targets, name='targets')
return tf.reduce_mean(-(targets * tf.log(preds + eps) + (1. - targets) * tf.log(1. - preds + eps)))
# ==================================
# ---------- LAYER MAPS --------- #
# ==================================
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def l1_l2_regularizer(scale_l1=1.0, scale_l2=1.0, scope=None):
"""Returns a function that can be used to apply L1 L2 regularizations.
Args:
scale_l1: A scalar multiplier `Tensor` for L1 regularization.
scale_l2: A scalar multiplier `Tensor` for L2 regularization.
scope: An optional op_scope name.
Returns:
A function with signature `l1_l2(weights)` that applies a weighted sum of
L1 L2 regularization.
Raises:
ValueError: If scale is negative or if scale is not a float.
"""
scope = scope or 'l1_l2_regularizer'
return sum_regularizer([l1_regularizer(scale_l1),
l2_regularizer(scale_l2)],
scope=scope)
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Parameters
----------
preds : A `Tensor` of type `float32` or `float64`.
targets : A `Tensor` of the same type and shape as `preds`.
"""
print("Undocumented")
from tensorflow.python.framework import ops
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(output, target, name=None):
"""Computes binary cross entropy given `output`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Parameters
----------
output : A `Tensor` of type `float32` or `float64`.
target : A `Tensor` of the same type and shape as `output`.
"""
# print("Undocumented")
from tensorflow.python.framework import ops
eps = 1e-12
with ops.op_scope([output, target], name, "bce_loss") as name:
output = ops.convert_to_tensor(output, name="preds")
target = ops.convert_to_tensor(targets, name="target")
return tf.reduce_mean(-(target * tf.log(output + eps) +
(1. - target) * tf.log(1. - output + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def sequence_loss_by_batch(logits, targets, weights, average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed (averaged).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss_by_batch"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
def sequence_loss(logits,
targets,
weights,
name):
"""TODO(nh2tran): docstring.
Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
#~ with tf.name_scope(name=name,
#~ values=logits + targets + weights):
with ops.op_scope(logits + targets + weights, name):
cost = math_ops.reduce_sum(sequence_loss_per_sample(logits,
targets,
weights))
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def tf_d_stepy(x,name=None):
with ops.op_scope([x], name, "d_stepy") as name:
y = tf.py_func(np_d_stepy_32,
[x],
[tf.float32],
name=name,
stateful=False)
return y[0]
def tf_stepy(x, name=None):
with ops.op_scope([x], name, "stepy") as name:
y = py_func(np_stepy_32,
[x],
[tf.float32],
name=name,
grad=stepygrad) # <-- here's the call to the gradient
return y[0]
def do_center_crop(value, size, name=None):
"""Randomly crops a tensor to a given size.
Slices a shape `size` portion out of `value` at a uniformly chosen offset.
Requires `value.shape >= size`.
If a dimension should not be cropped, pass the full size of that dimension.
For example, RGB images can be cropped with
`size = [crop_height, crop_width, 3]`.
Args:
value: Input tensor to crop.
size: 1-D tensor with size the rank of `value`.
seed: Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
name: A name for this operation (optional).
Returns:
A cropped tensor of the same rank as `value` and shape `size`.
"""
# TODO(shlens): Implement edge case to guarantee output size dimensions.
# If size > value.shape, zero pad the result so that it always has shape
# exactly size.
from tensorflow.python.framework import dtypes
with ops.op_scope([value, size], name, "center_crop") as name:
value = ops.convert_to_tensor(value, name="value")
size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size")
shape = array_ops.shape(value)
check = logging_ops.Assert(
math_ops.reduce_all(shape >= size),
["Need value.shape >= size, got ", shape, size])
shape = control_flow_ops.with_dependencies([check], shape)
limit = shape - size + 1
offset = tf.random_uniform(
array_ops.shape(shape),
dtype=size.dtype,
maxval=size.dtype.max,
seed=0) % limit
offset2 = shape // 2 - size // 2
#import ipdb; ipdb.set_trace()
return array_ops.slice(value, offset, size, name=name)
def assign_moving_average(variable, value, decay, name=None):
"""Compute the moving average of a variable.
The moving average of 'variable' updated with 'value' is:
variable * decay + value * (1 - decay)
The returned Operation sets 'variable' to the newly computed moving average.
The new value of 'variable' can be set with the 'AssignSub' op as:
variable -= (1 - decay) * (variable - value)
Args:
variable: A Variable.
value: A tensor with the same shape as 'variable'
decay: A float Tensor or float value. The moving average decay.
name: Optional name of the returned operation.
Returns:
An Operation that updates 'variable' with the newly computed
moving average.
"""
with ops.op_scope([variable, value, decay], name, "AssignMovingAvg") as scope:
with ops.colocate_with(variable):
decay = ops.convert_to_tensor(1.0 - decay, name="decay")
if decay.dtype != variable.dtype.base_dtype:
decay = math_ops.cast(decay, variable.dtype.base_dtype)
return state_ops.assign_sub(variable,
(variable - value) * decay,
name=scope)
def binary_cross_entropy(output, target, epsilon=1e-8, name='bce_loss'):
"""Computes binary cross entropy given `output`.
For brevity, let `x = output`, `z = target`. The binary cross entropy loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Parameters
----------
output : tensor of type `float32` or `float64`.
target : tensor of the same type and shape as `output`.
epsilon : float
A small value to avoid output is zero.
name : string
An optional name to attach to this layer.
References
-----------
- `DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`_
"""
# from tensorflow.python.framework import ops
# with ops.op_scope([output, target], name, "bce_loss") as name:
# output = ops.convert_to_tensor(output, name="preds")
# target = ops.convert_to_tensor(targets, name="target")
with tf.name_scope(name):
return tf.reduce_mean(tf.reduce_sum(-(target * tf.log(output + epsilon) +
(1. - target) * tf.log(1. - output + epsilon)), axis=1))
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def many2one_model_with_buckets(encoder_inputs_list, decoder_inputs, targets, weights,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None, spscale=20):
# Modified model with buckets to accept 2 encoders
if len(encoder_inputs_list[0]) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs_list + decoder_inputs + targets + weights
losses = []
outputs = []
speech_buckets = [(x*spscale, y) for (x,y) in buckets]
with ops.op_scope(all_inputs, name, "many2one_model_with_buckets"):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
#bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]])
x = encoder_inputs_list[0][:bucket[0]]
#print( x )
y = encoder_inputs_list[1][:speech_buckets[j][0]]
bucket_outputs, _ = seq2seq([x, y], decoder_inputs[:bucket[1]])
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def many2one_model_with_buckets(encoder_inputs_list, decoder_inputs, targets, weights,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None, spscale=20):
# Modified model with buckets to accept 2 encoders
if len(encoder_inputs_list[0]) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs_list + decoder_inputs + targets + weights
losses = []
outputs = []
speech_buckets = [(x*spscale, y) for (x,y) in buckets]
with ops.op_scope(all_inputs, name, "many2one_model_with_buckets"):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
#bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]])
x = encoder_inputs_list[0][:bucket[0]]
#print( x )
y = encoder_inputs_list[1][:speech_buckets[j][0]]
bucket_outputs, _ = seq2seq([x, y], decoder_inputs[:bucket[1]])
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
#with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
with tf.name_scope(name, "sequence_loss", logits + targets + weights):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def many2one_model_with_buckets(encoder_inputs_list, decoder_inputs, targets, weights,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None, spscale=20):
# Modified model with buckets to accept 2 encoders
if len(encoder_inputs_list[0]) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs_list + decoder_inputs + targets + weights
losses = []
outputs = []
speech_buckets = [(x*spscale, y) for (x,y) in buckets]
with ops.op_scope(all_inputs, name, "many2one_model_with_buckets"):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
#bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]])
x = encoder_inputs_list[0][:bucket[0]]
#print( x )
y = encoder_inputs_list[1][:speech_buckets[j][0]]
bucket_outputs, _ = seq2seq([x, y], decoder_inputs[:bucket[1]])
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses