Python tensorflow.python.framework.ops 模块,reset_default_graph() 实例源码

我们从Python开源项目中,提取了以下41个代码示例,用于说明如何使用tensorflow.python.framework.ops.reset_default_graph()

项目:deep-summarization    作者:harpribot    | 项目源码 | 文件源码
def begin_session(self):
        """
        Begins the session

        :return: None
        """
        # start the tensorflow session
        ops.reset_default_graph()
        # initialize interactive session
        self.sess = tf.Session()
项目:kboc    作者:vmonaco    | 项目源码 | 文件源码
def fit(self, X, y):
        y = np.array(y)
        unique_y = np.unique(y)
        for yi in unique_y:
            # Neural network models for user T192 originally did not converge due to parameter initialization
            # Use a different seed to choose different initial parameters. The models seem to converge with seed 2016.
            if yi == 'T192':
                np.random.seed(2016)

            Xi = X[y == yi]

            target_input = events2keynames(min(Xi, key=len)[:, 0])

            if self.align == 'drop':
                target_input, _ = character_keys_only(target_input)

            self.target_inputs[yi] = target_input
            Xi = np.array([fixedtext_features(x, self.target_inputs[yi], align=self.align) for x in Xi])
            self.models[yi] = self.model_factory()

            if self.feature_normalization == 'stddev':
                self.duration_mins[yi] = Xi[:, 0::2].mean() - Xi[:, 0::2].std()
                self.duration_maxs[yi] = Xi[:, 0::2].mean() + Xi[:, 0::2].std()
                self.latency_mins[yi] = Xi[:, 1::2].mean() - Xi[:, 1::2].std()
                self.latency_maxs[yi] = Xi[:, 1::2].mean() + Xi[:, 1::2].std()
            elif self.feature_normalization == 'minmax':
                self.duration_mins[yi] = Xi[:, 0::2].min()
                self.duration_maxs[yi] = Xi[:, 0::2].max()
                self.latency_mins[yi] = Xi[:, 1::2].min()
                self.latency_maxs[yi] = Xi[:, 1::2].max()

            Xi = self.normalize(Xi, yi)

            from tensorflow.python.framework import ops
            ops.reset_default_graph()

            self.models[yi].fit(Xi)
        return
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def clear_session():
      """Destroys the current TF graph and creates a new one.

      Useful to avoid clutter from old models / layers.
      """
      global _SESSION
      global _GRAPH_LEARNING_PHASES  # pylint: disable=global-variable-not-assigned
      ops.reset_default_graph()
      reset_uids()
      _SESSION = None
      phase = array_ops.placeholder(dtype='bool', name='keras_learning_phase')
      _GRAPH_LEARNING_PHASES = {}
      _GRAPH_LEARNING_PHASES[ops.get_default_graph()] = phase
项目:gps    作者:cbfinn    | 项目源码 | 文件源码
def __setstate__(self, state):
        from tensorflow.python.framework import ops
        ops.reset_default_graph()  # we need to destroy the default graph before re_init or checkpoint won't restore.
        self.__init__(state['hyperparams'], state['dO'], state['dU'])
        self.policy.scale = state['scale']
        self.policy.bias = state['bias']
        self.policy.x_idx = state['x_idx']
        self.policy.chol_pol_covar = state['chol_pol_covar']
        self.tf_iter = state['tf_iter']

        with tempfile.NamedTemporaryFile('w+b', delete=True) as f:
            f.write(state['wts'])
            f.seek(0)
            self.restore_model(f.name)
项目:gps    作者:cbfinn    | 项目源码 | 文件源码
def load_policy(cls, policy_dict_path, tf_generator, network_config=None):
        """
        For when we only need to load a policy for the forward pass. For instance, to run on the robot from
        a checkpointed policy.
        """
        from tensorflow.python.framework import ops
        ops.reset_default_graph()  # we need to destroy the default graph before re_init or checkpoint won't restore.
        pol_dict = pickle.load(open(policy_dict_path, "rb"))
        tf_map = tf_generator(dim_input=pol_dict['deg_obs'], dim_output=pol_dict['deg_action'],
                              batch_size=1, network_config=network_config)

        sess = tf.Session()
        init_op = tf.initialize_all_variables()
        sess.run(init_op)
        saver = tf.train.Saver()
        check_file = pol_dict['checkpoint_path_tf']
        saver.restore(sess, check_file)

        device_string = pol_dict['device_string']

        cls_init = cls(pol_dict['deg_action'], tf_map.get_input_tensor(), tf_map.get_output_op(), np.zeros((1,)),
                       sess, device_string)
        cls_init.chol_pol_covar = pol_dict['chol_pol_covar']
        cls_init.scale = pol_dict['scale']
        cls_init.bias = pol_dict['bias']
        cls_init.x_idx = pol_dict['x_idx']
        return cls_init
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def load_policy(cls, policy_dict_path, tf_generator, network_config=None):
        """
        For when we only need to load a policy for the forward pass. For instance, to run on the robot from
        a checkpointed policy.
        """
        from tensorflow.python.framework import ops
        ops.reset_default_graph()  # we need to destroy the default graph before re_init or checkpoint won't restore.
        pol_dict = pickle.load(open(policy_dict_path, "rb"))
        tf_map = tf_generator(dim_input=pol_dict['deg_obs'], dim_output=pol_dict['deg_action'],
                              batch_size=1, network_config=network_config)

        sess = tf.Session()
        init_op = tf.initialize_all_variables()
        sess.run(init_op)
        saver = tf.train.Saver()
        check_file = pol_dict['checkpoint_path_tf']
        saver.restore(sess, check_file)

        device_string = pol_dict['device_string']

        cls_init = cls(pol_dict['deg_action'], tf_map.get_input_tensor(), tf_map.get_output_op(), np.zeros((1,)),
                       sess, device_string)
        cls_init.chol_pol_covar = pol_dict['chol_pol_covar']
        cls_init.scale = pol_dict['scale']
        cls_init.bias = pol_dict['bias']
        cls_init.x_idx = pol_dict['x_idx']
        return cls_init
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def reset_state():
    # Reset all random seeds, as well as TensorFlow default graph
    random.seed(0)
    np.random.seed(0)
    import tensorflow as tf
    from tensorflow.python.framework import ops
    tf.set_random_seed(0)
    ops.reset_default_graph()
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def reset_state():
    # Reset all random seeds, as well as TensorFlow default graph
    random.seed(0)
    np.random.seed(0)
    import tensorflow as tf
    from tensorflow.python.framework import ops
    tf.set_random_seed(0)
    ops.reset_default_graph()
项目:gps_superball_public    作者:young-geng    | 项目源码 | 文件源码
def __setstate__(self, state):
        from tensorflow.python.framework import ops
        ops.reset_default_graph()  # we need to destroy the default graph before re_init or checkpoint won't restore.
        self.__init__(state['hyperparams'], state['dO'], state['dU'])
        self.policy.scale = state['scale']
        self.policy.bias = state['bias']
        self.tf_iter = state['tf_iter']

        saver = tf.train.Saver()
        check_file = self.checkpoint_file
        saver.restore(self.sess, check_file)
项目:gps_superball_public    作者:young-geng    | 项目源码 | 文件源码
def load_policy(cls, policy_dict_path, tf_generator, network_config=None):
        """
        For when we only need to load a policy for the forward pass. For instance, to run on the robot from
        a checkpointed policy.
        """
        from tensorflow.python.framework import ops
        ops.reset_default_graph()  # we need to destroy the default graph before re_init or checkpoint won't restore.
        pol_dict = pickle.load(open(policy_dict_path, "rb"))
        tf_map = tf_generator(dim_input=pol_dict['deg_obs'], dim_output=pol_dict['deg_action'],
                              batch_size=1, network_config=network_config)

        sess = tf.Session()
        init_op = tf.initialize_all_variables()
        sess.run(init_op)
        saver = tf.train.Saver()
        check_file = pol_dict['checkpoint_path_tf']
        saver.restore(sess, check_file)

        device_string = pol_dict['device_string']

        cls_init = cls(pol_dict['deg_action'], tf_map.get_input_tensor(), tf_map.get_output_op(), np.zeros((1,)),
                       sess, device_string)
        cls_init.chol_pol_covar = pol_dict['chol_pol_covar']
        cls_init.scale = pol_dict['scale']
        cls_init.bias = pol_dict['bias']
        cls_init.x_idx = pol_dict['x_idx']
        return cls_init
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_copy_assert(self):
    ops.reset_default_graph()
    a = constant_op.constant(1)
    b = constant_op.constant(1)
    eq = math_ops.equal(a, b)
    assert_op = control_flow_ops.Assert(eq, [a, b])
    with ops.control_dependencies([assert_op]):
      _ = math_ops.add(a, b)
    sgv = ge.make_view([assert_op, eq.op, a.op, b.op])
    copier = ge.Transformer()
    _, info = copier(sgv, sgv.graph, "", "")
    new_assert_op = info.transformed(assert_op)
    self.assertIsNotNone(new_assert_op)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_graph_replace(self):
    ops.reset_default_graph()
    a = constant_op.constant(1.0, name="a")
    b = variables.Variable(1.0, name="b")
    eps = constant_op.constant(0.001, name="eps")
    c = array_ops.identity(a + b + eps, name="c")
    a_new = constant_op.constant(2.0, name="a_new")
    c_new = ge.graph_replace(c, {a: a_new})
    with session.Session() as sess:
      sess.run(variables.global_variables_initializer())
      c_val, c_new_val = sess.run([c, c_new])
    self.assertNear(c_val, 2.001, ERROR_TOLERANCE)
    self.assertNear(c_new_val, 3.001, ERROR_TOLERANCE)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_graph_replace_dict(self):
    ops.reset_default_graph()
    a = constant_op.constant(1.0, name="a")
    b = variables.Variable(1.0, name="b")
    eps = constant_op.constant(0.001, name="eps")
    c = array_ops.identity(a + b + eps, name="c")
    a_new = constant_op.constant(2.0, name="a_new")
    c_new = ge.graph_replace({"c": c}, {a: a_new})
    self.assertTrue(isinstance(c_new, dict))
    with session.Session() as sess:
      sess.run(variables.global_variables_initializer())
      c_val, c_new_val = sess.run([c, c_new])
    self.assertTrue(isinstance(c_new_val, dict))
    self.assertNear(c_val, 2.001, ERROR_TOLERANCE)
    self.assertNear(c_new_val["c"], 3.001, ERROR_TOLERANCE)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_graph_replace_ordered_dict(self):
    ops.reset_default_graph()
    a = constant_op.constant(1.0, name="a")
    b = variables.Variable(1.0, name="b")
    eps = constant_op.constant(0.001, name="eps")
    c = array_ops.identity(a + b + eps, name="c")
    a_new = constant_op.constant(2.0, name="a_new")
    c_new = ge.graph_replace(collections.OrderedDict({"c": c}), {a: a_new})
    self.assertTrue(isinstance(c_new, collections.OrderedDict))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_graph_replace_named_tuple(self):
    ops.reset_default_graph()
    a = constant_op.constant(1.0, name="a")
    b = variables.Variable(1.0, name="b")
    eps = constant_op.constant(0.001, name="eps")
    c = array_ops.identity(a + b + eps, name="c")
    a_new = constant_op.constant(2.0, name="a_new")
    one_tensor = collections.namedtuple("OneTensor", ["t"])
    c_new = ge.graph_replace(one_tensor(c), {a: a_new})
    self.assertTrue(isinstance(c_new, one_tensor))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testOutputSizeRandomSizesAndStridesValidPadding(self):
    np.random.seed(0)
    max_image_size = 10

    for _ in range(10):
      num_filters = 1
      input_size = [
          1, np.random.randint(1, max_image_size),
          np.random.randint(1, max_image_size), 1
      ]
      filter_size = [
          np.random.randint(1, input_size[1] + 1),
          np.random.randint(1, input_size[2] + 1)
      ]
      stride = [np.random.randint(1, 3), np.random.randint(1, 3)]

      ops.reset_default_graph()
      graph = ops.Graph()
      with graph.as_default():
        images = random_ops.random_uniform(input_size, seed=1)
        transpose = layers_lib.conv2d_transpose(
            images, num_filters, filter_size, stride=stride, padding='VALID')
        conv = layers_lib.conv2d(
            transpose, num_filters, filter_size, stride=stride, padding='VALID')

        with self.test_session(graph=graph) as sess:
          sess.run(variables_lib.global_variables_initializer())
          self.assertListEqual(list(conv.eval().shape), input_size)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()

    self._batch_size = 4
    self._num_classes = 3
    self._np_predictions = np.matrix(('0.1 0.2 0.7;'
                                      '0.6 0.2 0.2;'
                                      '0.0 0.9 0.1;'
                                      '0.2 0.0 0.8'))
    self._np_labels = [0, 0, 0, 0]
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    np.random.seed(1)
    ops.reset_default_graph()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def setUp(self):
    ops.reset_default_graph()
项目:player-ConvNN    作者:FlankMe    | 项目源码 | 文件源码
def close(self):

        # If training, save the RAM memory to file
        if self._is_training:
            self._saver.save(self._session, self._PARAMETERS_FILE_PATH)

            temp_copy = []
            while self._previous_observations:
                temp_copy.append(self._previous_observations.pop())

            while len(temp_copy) > MAX_OBSERVATIONS_IN_FILE:   
                file_copy = []
                for _ in range(0, MAX_OBSERVATIONS_IN_FILE):
                    file_copy.append(temp_copy.pop())
                np.save('obs_' + str(self._number_files) + '.npy', file_copy)
                self._number_files += 1   
                del file_copy                 

            np.save('obs_' + str(self._number_files) + '.npy', temp_copy)
            print('\nTotal number of saved file containing transitions:',
                  self._number_files + 1)
            del temp_copy

        # Close the session and clear TensorFlow's graphs             
        ops.reset_default_graph() 
        self._session.close()

        # Plot the graph of the average Implied/Realized reward ratio
        MA = 50       # moving average parameter
        if len(self._implied_realized_reward_ratio) > MA:
            plt.figure()
            plt.subplot(111)
            title = plt.title(('History of implied/realized reward ratio'), 
                                fontsize="x-large")
            line = self._implied_realized_reward_ratio.copy()
            average = [np.mean(line[i:i+MA]) for i in range(len(line)-MA)]
            dt = [i for i in range(len(line))]
            plt.plot(dt, line, 'r', 
                     label='Individual observations')
            plt.plot(dt[MA:], average, 'b', 
                     label='50-observation moving average')
            plt.axis([0, len(line), np.min(average)*0.5, np.max(average)*2.])
            title.set_y(1.0)
            plt.legend()
            plt.show()