我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用tensorflow.python.ops.nn_ops.bias_add()。
def modrelu(z, b, comp): if comp: z_norm = math_ops.sqrt(math_ops.square(math_ops.real(z)) + math_ops.square(math_ops.imag(z))) + 0.00001 step1 = nn_ops.bias_add(z_norm, b) step2 = math_ops.complex(nn_ops.relu(step1), array_ops.zeros_like(z_norm)) step3 = z/math_ops.complex(z_norm, array_ops.zeros_like(z_norm)) else: z_norm = math_ops.abs(z) + 0.00001 step1 = nn_ops.bias_add(z_norm, b) step2 = nn_ops.relu(step1) step3 = math_ops.sign(z) return math_ops.multiply(step3, step2)
def _linear(args, output_size, bias, bias_start=0.0): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape() for a in args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value dtype = [a.dtype for a in args][0] # Now the computation. scope = vs.get_variable_scope() with vs.variable_scope(scope) as outer_scope: weights = vs.get_variable( _WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size], dtype=dtype) if len(args) == 1: res = math_ops.matmul(args[0], weights) else: res = math_ops.matmul(array_ops.concat(args, 1), weights) if not bias: return res with vs.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = vs.get_variable( _BIAS_VARIABLE_NAME, [output_size], dtype=dtype, initializer=init_ops.constant_initializer(bias_start, dtype=dtype)) return nn_ops.bias_add(res, biases)
def _blinear(args, args2, output_size, bias, bias_start=0.0): '''Apply _linear ops to the two parallele layers with same wights''' if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] total_arg_size = 0 shapes = [a.get_shape() for a in args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError( "linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value dtype = [a.dtype for a in args][0] # Now the computation. scope = vs.get_variable_scope() with vs.variable_scope(scope) as outer_scope: weights = vs.get_variable( 'weight', [total_arg_size, output_size / 2], dtype=dtype) # apply weights if len(args) == 1: res = math_ops.matmul(args[0], weights) res2 = math_ops.matmul(args2[0], weights) else: # ipdb.set_trace() res = math_ops.matmul(array_ops.concat(1, args), weights) res2 = math_ops.matmul(array_ops.concat(1, args2), weights) if not bias: return res, res2 # apply bias with vs.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = vs.get_variable( 'bias', [output_size] / 2, dtype=dtype, initializer=init_ops.constant_initializer( bias_start, dtype=dtype)) return nn_ops.bias_add(res, biases), nn_ops.bias_add(res2, biases)
def linear(args, output_size, bias, bias_initializer=None, kernel_initializer=None): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_initializer: starting value to initialize the bias (default is all zeros). kernel_initializer: starting value to initialize the weight. Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape() for a in args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value dtype = [a.dtype for a in args][0] # Now the computation. scope = vs.get_variable_scope() with vs.variable_scope(scope) as outer_scope: weights = vs.get_variable( _WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size], dtype=dtype, initializer=kernel_initializer) if len(args) == 1: res = math_ops.matmul(args[0], weights) else: res = math_ops.matmul(array_ops.concat(args, 1), weights) if not bias: return res with vs.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) if bias_initializer is None: bias_initializer = init_ops.constant_initializer(0.0, dtype=dtype) biases = vs.get_variable( _BIAS_VARIABLE_NAME, [output_size], dtype=dtype, initializer=bias_initializer) return nn_ops.bias_add(res, biases)
def _linear(args, output_size, bias, bias_start=0.0, scope=None): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. scope: (optional) Variable scope to create parameters in. Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape() for a in args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value dtype = [a.dtype for a in args][0] # Now the computation. scope = vs.get_variable_scope() with vs.variable_scope(scope) as outer_scope: weights = vs.get_variable( "weights", [total_arg_size, output_size], dtype=dtype) if len(args) == 1: res = math_ops.matmul(args[0], weights) else: res = math_ops.matmul(array_ops.concat(args, 1), weights) if not bias: return res with vs.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = vs.get_variable( "biases", [output_size], dtype=dtype, initializer=init_ops.constant_initializer(bias_start, dtype=dtype)) return nn_ops.bias_add(res, biases)
def _linear(args, output_size, bias, bias_start=0.0): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape() for a in args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value dtype = [a.dtype for a in args][0] # Now the computation. scope = vs.get_variable_scope() with vs.variable_scope(scope) as outer_scope: weights = vs.get_variable( "weights", [total_arg_size, output_size], dtype=dtype) if len(args) == 1: res = math_ops.matmul(args[0], weights) else: res = math_ops.matmul(array_ops.concat(args, 1), weights) if not bias: return res with vs.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = vs.get_variable( "biases", [output_size], dtype=dtype, initializer=init_ops.constant_initializer(bias_start, dtype=dtype)) return nn_ops.bias_add(res, biases)
def _linear(args, output_size, bias, bias_initializer=None, kernel_initializer=None): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_initializer: starting value to initialize the bias (default is all zeros). kernel_initializer: starting value to initialize the weight. Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape() for a in args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value dtype = [a.dtype for a in args][0] # Now the computation. scope = vs.get_variable_scope() with vs.variable_scope(scope) as outer_scope: weights = vs.get_variable( _WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size], dtype=dtype, initializer=kernel_initializer) if len(args) == 1: res = math_ops.matmul(args[0], weights) else: res = math_ops.matmul(array_ops.concat(args, 1), weights) if not bias: return res with vs.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) if bias_initializer is None: bias_initializer = init_ops.constant_initializer(0.0, dtype=dtype) biases = vs.get_variable( _BIAS_VARIABLE_NAME, [output_size], dtype=dtype, initializer=bias_initializer) return nn_ops.bias_add(res, biases)