我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用theano.tensor.itensor4()。
def __init__(self, batch_size, image_shape, n_hidden): """ :param batch_size: how many images to have in a single minibatch :param image_shape: (channels x height x width) :param n_hidden: number of hidden units in the MD-RNN """ self.batch_size = batch_size self.input_channels = image_shape[0] self.h = n_hidden self.height = image_shape[1] self.width = image_shape[2] self.out_channels = n_hidden self.n_colors = image_shape[0] self.inputs = T.tensor4("images") self.labels = T.itensor4("labels") self.network, self.loss, self.output = self._define_network(self.inputs, self.labels) self._define_forward_passes(self.network, self.loss, self.output, self.inputs, self.labels)
def ndim_itensor(ndim, name=None): if ndim == 2: return T.imatrix(name) elif ndim == 3: return T.itensor3(name) elif ndim == 4: return T.itensor4(name) return T.imatrix(name) # dot-product
def make_node(self, x, x2, x3, x4, x5): # check that the theano version has support for __props__. # This next line looks like it has a typo, # but it's actually a way to detect the theano version # is sufficiently recent to support the use of __props__. assert hasattr(self, '_props'), "Your version of theano is too old to support __props__." x = tensor.as_tensor_variable(x) x2 = tensor.as_tensor_variable(x2) x3 = tensor.as_tensor_variable(x3) x4 = tensor.as_tensor_variable(x4) x5 = tensor.as_tensor_variable(x5) if prm.att_doc: if prm.compute_emb: td = tensor.itensor4().type() else: td = tensor.ftensor4().type() tm = tensor.ftensor3().type() else: if prm.compute_emb: td = tensor.itensor3().type() else: td = tensor.ftensor3().type() tm = tensor.fmatrix().type() return theano.Apply(self, [x,x2,x3,x4,x5], [td, tm, \ tensor.fmatrix().type(), tensor.ivector().type()])