Python theano.tensor 模块,mod() 实例源码
我们从Python开源项目中,提取了以下23个代码示例,用于说明如何使用theano.tensor.mod()。
def test_mod_compile():
"""
This test generate an Elemwise of Composite as:
Elemwise{
Composite{
Composite{
Composite{
Composite{mod,EQ},
Switch},
mul},
add}}
The c_code generated is not compiling as of 30 June 2010. I fix the
compilation in the same commit.
"""
x = tensor.vector()
y = tensor.vector()
shape = x.shape
out = tensor.switch(tensor.eq(3 % x.shape[0], 0), y, y[:-1])
f = theano.function([x, y], out)
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def diagonal_phase_gmm(true, mu, sigma, coeff, epsilon=1E-5):
n_dim = true.ndim
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * tensor.sum(inner, axis=1)
nll = -logsumexp(tensor.log(coeff) + inner, axis=1)
nll = nll.reshape(shape_t[:-1], ndim=n_dim-1)
return nll
def single_dimensional_phase_gmms(true, mu, sigma, coeff, epsilon=1E-5):
shape_t = true.shape
true = true.reshape((-1, shape_t[-1]))
true = true.dimshuffle(0, 1, 'x')
inner0 = np.pi - abs(tensor.mod(true - mu, 2 * np.pi) - np.pi)
inner = tensor.log(2 * np.pi) + 2 * tensor.log(sigma)
inner += tensor.sqr(inner0 / sigma)
inner = -0.5 * inner
nll = -logsumexp(tensor.sum(tensor.log(coeff) + inner, axis=1), axis=1)
nll = nll.reshape((shape_t[0], shape_t[1]))
return nll