Python torch.optim 模块,Adadelta() 实例源码

我们从Python开源项目中,提取了以下18个代码示例,用于说明如何使用torch.optim.Adadelta()

项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
项目:bandit-nmt    作者:khanhptnk    | 项目源码 | 文件源码
def _makeOptimizer(self):
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr)
        else:
            raise RuntimeError("Invalid optim method: " + self.method)
项目:BiDAF-PyTorch    作者:kelayamatoz    | 项目源码 | 文件源码
def __init__(self, config, model):
        # assert isinstance(model, Model)
        self.config = config
        self.model = model
        # self.optimizer = O.Adadelta(config.init_lr)
项目:NeuralMT    作者:hlt-mt    | 项目源码 | 文件源码
def set_parameters(self, params):
        self.params = list(params)  # careful: params may be a generator
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr)
        else:
            raise RuntimeError("Invalid optim method: " + self.method)
项目:alpha-dimt-icmlws    作者:sotetsuk    | 项目源码 | 文件源码
def set_parameters(self, params):
        self.params = list(params)  # careful: params may be a generator
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr)
        else:
            raise RuntimeError("Invalid optim method: " + self.method)
项目:covfefe    作者:deepnn    | 项目源码 | 文件源码
def adadelta(w, lr=1.0, rho=0.9, eps=1e-06, w_decay=0):
    return nn.Adadelta(params=w, lr=lr,
                       rho=rho, eps=eps,
                       weight_decay=w_decay)
项目:StackGAN_pytorch    作者:qizhex    | 项目源码 | 文件源码
def _makeOptimizer(self):
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr, betas=(0.5, 0.999))
        else:
            raise RuntimeError("Invalid optim method: " + self.method)
项目:repeval_rivercorners    作者:jabalazs    | 项目源码 | 文件源码
def _makeOptimizer(self):
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr)
        elif self.method == 'rmsprop':
            self.optimizer = optim.RMSprop(self.params, lr=self.lr)
        else:
            raise RuntimeError("Invalid optim method: " + self.method)
项目:OpenNMT-py    作者:OpenNMT    | 项目源码 | 文件源码
def set_parameters(self, params):
        self.params = [p for p in params if p.requires_grad]
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr,
                                        betas=self.betas, eps=1e-9)
        else:
            raise RuntimeError("Invalid optim method: " + self.method)

    # We use the default parameters for Adam that are suggested by
    # the original paper https://arxiv.org/pdf/1412.6980.pdf
    # These values are also used by other established implementations,
    # e.g. https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
    # https://keras.io/optimizers/
    # Recently there are slightly different values used in the paper
    # "Attention is all you need"
    # https://arxiv.org/pdf/1706.03762.pdf, particularly the value beta2=0.98
    # was used there however, beta2=0.999 is still arguably the more
    # established value, so we use that here as well
项目:R-net    作者:matthew-z    | 项目源码 | 文件源码
def __init__(self, args, dataloader_train, dataloader_dev, char_embedding_config, word_embedding_config,
                 sentence_encoding_config, pair_encoding_config, self_matching_config, pointer_config):

        # for validate
        expected_version = "1.1"
        with open(args.dev_json) as dataset_file:
            dataset_json = json.load(dataset_file)
            if dataset_json['version'] != expected_version:
                print('Evaluation expects v-' + expected_version +
                      ', but got dataset with v-' + dataset_json['version'],
                      file=sys.stderr)
            self.dev_dataset = dataset_json['data']

        self.dataloader_train = dataloader_train
        self.dataloader_dev = dataloader_dev

        self.model = RNet.Model(args, char_embedding_config, word_embedding_config, sentence_encoding_config,
                                pair_encoding_config, self_matching_config, pointer_config)
        self.parameters_trainable = list(
            filter(lambda p: p.requires_grad, self.model.parameters()))
        self.optimizer = optim.Adadelta(self.parameters_trainable, rho=0.95)
        self.best_f1 = 0
        self.step = 0
        self.start_epoch = args.start_epoch
        self.name = args.name
        self.start_time = datetime.datetime.now().strftime('%b-%d_%H-%M')

        if args.resume:
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume)
                self.start_epoch = checkpoint['epoch']
                self.best_f1 = checkpoint['best_f1']
                self.name = checkpoint['name']
                self.step = checkpoint['step']
                self.model.load_state_dict(checkpoint['state_dict'])
                self.optimizer.load_state_dict(checkpoint['optimizer'])
                self.start_time = checkpoint['start_time']

                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(args.resume, checkpoint['epoch']))
            else:
                raise ValueError("=> no checkpoint found at '{}'".format(args.resume))
        else:
            self.name += "_" + self.start_time

        # use which device
        if torch.cuda.is_available():
            self.model = self.model.cuda(args.device_id)
        else:
            self.model = self.model.cpu()

        self.loss_fn = torch.nn.CrossEntropyLoss()

        configure("log/%s" % (self.name), flush_secs=5)
        self.checkpoint_path = os.path.join(args.checkpoint_path, self.name)
        make_dirs(self.checkpoint_path)
项目:dlcv_for_beginners    作者:frombeijingwithlove    | 项目源码 | 文件源码
def parse_args():
    parser = argparse.ArgumentParser(
        description='A Simple Demo of Generative Adversarial Networks with 2D Samples',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('input_path',
                        help='Image or directory containing images to define distribution')

    parser.add_argument('--z_dim',
                        help='Dimensionality of latent space',
                        type=int, default=2)
    parser.add_argument('--iterations',
                        help='Num of training iterations',
                        type=int, default=2000)
    parser.add_argument('--batch_size',
                        help='Batch size of each kind',
                        type=int, default=2000)
    parser.add_argument('--optimizer',
                        help='Optimizer: Adadelta/Adam/RMSprop/SGD',
                        type=str, default='Adadelta')
    parser.add_argument('--d_lr',
                        help='Learning rate of discriminator, for Adadelta it is the base learning rate',
                        type=float, default=1)
    parser.add_argument('--g_lr',
                        help='Learning rate of generator, for Adadelta it is the base learning rate',
                        type=float, default=1)
    parser.add_argument('--d_steps',
                        help='Steps of discriminators in each iteration',
                        type=int, default=3)
    parser.add_argument('--g_steps',
                        help='Steps of generator in each iteration',
                        type=int, default=1)
    parser.add_argument('--d_hidden_size',
                        help='Num of hidden units in discriminator',
                        type=int, default=100)
    parser.add_argument('--g_hidden_size',
                        help='Num of hidden units in generator',
                        type=int, default=50)
    parser.add_argument('--display_interval',
                        help='Interval of iterations to display/export images',
                        type=int, default=10)
    parser.add_argument('--no_display',
                        help='Show plots during training', action='store_true')
    parser.add_argument('--export',
                        help='Export images', action='store_true')
    parser.add_argument('--cpu',
                        help='Set to CPU mode', action='store_true')

    args = parser.parse_args()
    args.input_path = args.input_path.rstrip(os.sep)
    args.optimizer = OPTIMIZERS[args.optimizer.lower()]

    return args
项目:SentEval    作者:facebookresearch    | 项目源码 | 文件源码
def get_optimizer(s):
    """
    Parse optimizer parameters.
    Input should be of the form:
        - "sgd,lr=0.01"
        - "adagrad,lr=0.1,lr_decay=0.05"
    """
    if "," in s:
        method = s[:s.find(',')]
        optim_params = {}
        for x in s[s.find(',') + 1:].split(','):
            split = x.split('=')
            assert len(split) == 2
            assert re.match("^[+-]?(\d+(\.\d*)?|\.\d+)$", split[1]) is not None
            optim_params[split[0]] = float(split[1])
    else:
        method = s
        optim_params = {}

    if method == 'adadelta':
        optim_fn = optim.Adadelta
    elif method == 'adagrad':
        optim_fn = optim.Adagrad
    elif method == 'adam':
        optim_fn = optim.Adam
    elif method == 'adamax':
        optim_fn = optim.Adamax
    elif method == 'asgd':
        optim_fn = optim.ASGD
    elif method == 'rmsprop':
        optim_fn = optim.RMSprop
    elif method == 'rprop':
        optim_fn = optim.Rprop
    elif method == 'sgd':
        optim_fn = optim.SGD
        assert 'lr' in optim_params
    else:
        raise Exception('Unknown optimization method: "%s"' % method)

    # check that we give good parameters to the optimizer
    expected_args = inspect.getargspec(optim_fn.__init__)[0]
    assert expected_args[:2] == ['self', 'params']
    if not all(k in expected_args[2:] for k in optim_params.keys()):
        raise Exception('Unexpected parameters: expected "%s", got "%s"' % (
            str(expected_args[2:]), str(optim_params.keys())))

    return optim_fn, optim_params
项目:FaderNetworks    作者:facebookresearch    | 项目源码 | 文件源码
def get_optimizer(model, s):
    """
    Parse optimizer parameters.
    Input should be of the form:
        - "sgd,lr=0.01"
        - "adagrad,lr=0.1,lr_decay=0.05"
    """
    if "," in s:
        method = s[:s.find(',')]
        optim_params = {}
        for x in s[s.find(',') + 1:].split(','):
            split = x.split('=')
            assert len(split) == 2
            assert re.match("^[+-]?(\d+(\.\d*)?|\.\d+)$", split[1]) is not None
            optim_params[split[0]] = float(split[1])
    else:
        method = s
        optim_params = {}

    if method == 'adadelta':
        optim_fn = optim.Adadelta
    elif method == 'adagrad':
        optim_fn = optim.Adagrad
    elif method == 'adam':
        optim_fn = optim.Adam
        optim_params['betas'] = (optim_params.get('beta1', 0.5), optim_params.get('beta2', 0.999))
        optim_params.pop('beta1', None)
        optim_params.pop('beta2', None)
    elif method == 'adamax':
        optim_fn = optim.Adamax
    elif method == 'asgd':
        optim_fn = optim.ASGD
    elif method == 'rmsprop':
        optim_fn = optim.RMSprop
    elif method == 'rprop':
        optim_fn = optim.Rprop
    elif method == 'sgd':
        optim_fn = optim.SGD
        assert 'lr' in optim_params
    else:
        raise Exception('Unknown optimization method: "%s"' % method)

    # check that we give good parameters to the optimizer
    expected_args = inspect.getargspec(optim_fn.__init__)[0]
    assert expected_args[:2] == ['self', 'params']
    if not all(k in expected_args[2:] for k in optim_params.keys()):
        raise Exception('Unexpected parameters: expected "%s", got "%s"' % (
            str(expected_args[2:]), str(optim_params.keys())))

    return optim_fn(model.parameters(), **optim_params)
项目:InferSent    作者:facebookresearch    | 项目源码 | 文件源码
def get_optimizer(s):
    """
    Parse optimizer parameters.
    Input should be of the form:
        - "sgd,lr=0.01"
        - "adagrad,lr=0.1,lr_decay=0.05"
    """
    if "," in s:
        method = s[:s.find(',')]
        optim_params = {}
        for x in s[s.find(',') + 1:].split(','):
            split = x.split('=')
            assert len(split) == 2
            assert re.match("^[+-]?(\d+(\.\d*)?|\.\d+)$", split[1]) is not None
            optim_params[split[0]] = float(split[1])
    else:
        method = s
        optim_params = {}

    if method == 'adadelta':
        optim_fn = optim.Adadelta
    elif method == 'adagrad':
        optim_fn = optim.Adagrad
    elif method == 'adam':
        optim_fn = optim.Adam
    elif method == 'adamax':
        optim_fn = optim.Adamax
    elif method == 'asgd':
        optim_fn = optim.ASGD
    elif method == 'rmsprop':
        optim_fn = optim.RMSprop
    elif method == 'rprop':
        optim_fn = optim.Rprop
    elif method == 'sgd':
        optim_fn = optim.SGD
        assert 'lr' in optim_params
    else:
        raise Exception('Unknown optimization method: "%s"' % method)

    # check that we give good parameters to the optimizer
    expected_args = inspect.getargspec(optim_fn.__init__)[0]
    assert expected_args[:2] == ['self', 'params']
    if not all(k in expected_args[2:] for k in optim_params.keys()):
        raise Exception('Unexpected parameters: expected "%s", got "%s"' % (
            str(expected_args[2:]), str(optim_params.keys())))

    return optim_fn, optim_params