Python torch.optim 模块,LBFGS 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用torch.optim.LBFGS

项目:pytorch-trpo    作者:mjacar    | 项目源码 | 文件源码
def fit(self, observations, labels):
    def closure():
      predicted = self.predict(observations)
      loss = self.loss_fn(predicted, labels)
      self.optimizer.zero_grad()
      loss.backward()
      return loss
    old_params = parameters_to_vector(self.model.parameters())
    for lr in self.lr * .5**np.arange(10):
      self.optimizer = optim.LBFGS(self.model.parameters(), lr=lr)
      self.optimizer.step(closure)
      current_params = parameters_to_vector(self.model.parameters())
      if any(np.isnan(current_params.data.cpu().numpy())):
        print("LBFGS optimization diverged. Rolling back update...")
        vector_to_parameters(old_params, self.model.parameters())
      else:
        return
项目:tutorials    作者:pytorch    | 项目源码 | 文件源码
def get_input_param_optimizer(input_img):
    # this line to show that input is a parameter that requires a gradient
    input_param = nn.Parameter(input_img.data)
    optimizer = optim.LBFGS([input_param])
    return input_param, optimizer


######################################################################
# **Last step**: the loop of gradient descent. At each step, we must feed
# the network with the updated input in order to compute the new losses,
# we must run the ``backward`` methods of each loss to dynamically compute
# their gradients and perform the step of gradient descent. The optimizer
# requires as argument a "closure": a function that reevaluates the model
# and returns the loss.
#
# However, there's a small catch. The optimized image may take its values
# between :math:`-\infty` and :math:`+\infty` instead of staying between 0
# and 1. In other words, the image might be well optimized and have absurd
# values. In fact, we must perform an optimization under constraints in
# order to keep having right vaues into our input image. There is a simple
# solution: at each step, to correct the image to maintain its values into
# the 0-1 interval.
#
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_lbfgs(self):
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params),
            wrap_old_fn(old_optim.lbfgs)
        )
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params, lr=5e-2, max_iter=5),
            wrap_old_fn(old_optim.lbfgs, learningRate=5e-2, maxIter=5)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.LBFGS([weight, bias]),
            ignore_multidevice=True
        )
项目:covfefe    作者:deepnn    | 项目源码 | 文件源码
def lbfgs(w, lr=1, max_iter=20, max_eval=None, tol_grad=1e-05,
          tol_change=1e-09, hist_size=100, line_search_fun=None):
    return nn.LBFGS(params=w, lr=lr, max_iter=max_iter,
                    max_eval=max_eval, tolerance_grad=tol_grad,
                    tolerance_change=tol_change, history_size=hist_size,
                    line_search_fn=line_search_fun)
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_lbfgs(self):
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params),
            wrap_old_fn(old_optim.lbfgs)
        )
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params, lr=5e-2, max_iter=5),
            wrap_old_fn(old_optim.lbfgs, learningRate=5e-2, maxIter=5)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.LBFGS([weight, bias]),
            ignore_multidevice=True
        )
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_lbfgs(self):
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params),
            wrap_old_fn(old_optim.lbfgs)
        )
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params, lr=5e-2, max_iter=5),
            wrap_old_fn(old_optim.lbfgs, learningRate=5e-2, maxIter=5)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.LBFGS([weight, bias]),
            ignore_multidevice=True
        )
项目:temperature_scaling    作者:gpleiss    | 项目源码 | 文件源码
def set_temperature(self, valid_loader):
        """
        Tune the tempearature of the model (using the validation set).
        We're going to set it to optimize NLL.
        valid_loader (DataLoader): validation set loader
        """
        self.cuda()
        nll_criterion = nn.CrossEntropyLoss().cuda()
        ece_criterion = _ECELoss().cuda()

        # First: collect all the logits and labels for the validation set
        logits_list = []
        labels_list = []
        for input, label in valid_loader:
            input_var = Variable(input, volatile=True).cuda()
            logits_var = self.model(input_var)
            logits_list.append(logits_var.data)
            labels_list.append(label)
        logits = torch.cat(logits_list).cuda()
        labels = torch.cat(labels_list).cuda()
        logits_var = Variable(logits)
        labels_var = Variable(labels)

        # Calculate NLL and ECE before temperature scaling
        before_temperature_nll = nll_criterion(logits_var, labels_var).data[0]
        before_temperature_ece = ece_criterion(logits_var, labels_var).data[0]
        print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))

        # Next: optimize the temperature w.r.t. NLL
        optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50)
        def eval():
            loss = nll_criterion(self.temperature_scale(logits_var), labels_var)
            loss.backward()
            return loss
        optimizer.step(eval)

        # Calculate NLL and ECE after temperature scaling
        after_temperature_nll = nll_criterion(self.temperature_scale(logits_var), labels_var).data[0]
        after_temperature_ece = ece_criterion(self.temperature_scale(logits_var), labels_var).data[0]
        print('Optimal temperature: %.3f' % self.temperature.data[0])
        print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))

        return self
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_lbfgs(self):
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params),
            wrap_old_fn(old_optim.lbfgs)
        )
        self._test_rosenbrock(
            lambda params: optim.LBFGS(params, lr=5e-2, max_iter=5),
            wrap_old_fn(old_optim.lbfgs, learningRate=5e-2, maxIter=5)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.LBFGS([weight, bias]),
            ignore_multidevice=True
        )
项目:StyleTransfer    作者:frendyxzc    | 项目源码 | 文件源码
def get_input_param_optimizer(input_img):
    input_param = nn.Parameter(input_img.data)
    optimizer = optim.LBFGS([input_param])
    return input_param, optimizer