Python torchvision.models 模块,resnet101() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用torchvision.models.resnet101()

项目:PyTorch-Encoding    作者:zhanghang1989    | 项目源码 | 文件源码
def __init__(self, args):
        nclass=args.nclass
        super(Net, self).__init__()
        self.backbone = args.backbone
        # copying modules from pretrained models
        if self.backbone == 'resnet50':
            self.pretrained = resnet.resnet50(pretrained=True)
        elif self.backbone == 'resnet101':
            self.pretrained = resnet.resnet101(pretrained=True)
        elif self.backbone == 'resnet152':
            self.pretrained = resnet.resnet152(pretrained=True)
        else:
            raise RuntimeError('unknown backbone: {}'.format(self.backbone))
        n_codes = 32
        self.head = nn.Sequential(
            nn.Conv2d(2048, 128, 1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            encoding.nn.Encoding(D=128,K=n_codes),
            encoding.nn.View(-1, 128*n_codes),
            encoding.nn.Normalize(),
            nn.Linear(128*n_codes, nclass),
        )
项目:voc_classification    作者:HyeonwooNoh    | 项目源码 | 文件源码
def GetPretrainedModel(params, num_classes):
    if params['model'] == 'resnet18':
        model = models.resnet18(pretrained=True)
    elif params['model'] == 'resnet34':
        model = models.resnet34(pretrained=True)
    elif params['model'] == 'resnet50':
        model = models.resnet50(pretrained=True)
    elif params['model'] == 'resnet101':
        model = models.resnet101(pretrained=True)
    elif params['model'] == 'resnet152':
        model = models.resnet152(pretrained=True)
    else:
        raise ValueError('Unknown model type')
    num_features = model.fc.in_features
    model.fc = SigmoidLinear(num_features, num_classes)
    return model
项目:wildcat.pytorch    作者:durandtibo    | 项目源码 | 文件源码
def resnet101_wildcat(num_classes, pretrained=True, kmax=1, kmin=None, alpha=1, num_maps=1):
    model = models.resnet101(pretrained)
    pooling = nn.Sequential()
    pooling.add_module('class_wise', ClassWisePool(num_maps))
    pooling.add_module('spatial', WildcatPool2d(kmax, kmin, alpha))
    return ResNetWSL(model, num_classes * num_maps, pooling=pooling)
项目:pytorch-semantic-segmentation    作者:ZijunDeng    | 项目源码 | 文件源码
def __init__(self, num_classes, pretrained=True, use_aux=True):
        super(PSPNet, self).__init__()
        self.use_aux = use_aux
        resnet = models.resnet101()
        if pretrained:
            resnet.load_state_dict(torch.load(res101_path))
        self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
        self.layer1, self.layer2, self.layer3, self.layer4 = resnet.layer1, resnet.layer2, resnet.layer3, resnet.layer4

        for n, m in self.layer3.named_modules():
            if 'conv2' in n:
                m.dilation, m.padding, m.stride = (2, 2), (2, 2), (1, 1)
            elif 'downsample.0' in n:
                m.stride = (1, 1)
        for n, m in self.layer4.named_modules():
            if 'conv2' in n:
                m.dilation, m.padding, m.stride = (4, 4), (4, 4), (1, 1)
            elif 'downsample.0' in n:
                m.stride = (1, 1)

        self.ppm = _PyramidPoolingModule(2048, 512, (1, 2, 3, 6))
        self.final = nn.Sequential(
            nn.Conv2d(4096, 512, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(512, momentum=.95),
            nn.ReLU(inplace=True),
            nn.Dropout(0.1),
            nn.Conv2d(512, num_classes, kernel_size=1)
        )

        if use_aux:
            self.aux_logits = nn.Conv2d(1024, num_classes, kernel_size=1)
            initialize_weights(self.aux_logits)

        initialize_weights(self.ppm, self.final)
项目:weldon.resnet.pytorch    作者:durandtibo    | 项目源码 | 文件源码
def resnet101_weldon(num_classes, pretrained=True, kmax=1, kmin=None):
    model = models.resnet101(pretrained)
    pooling = WeldonPool2d(kmax, kmin)
    return ResNetWSL(model, num_classes, pooling=pooling)
项目:pytorch_RFCN    作者:PureDiors    | 项目源码 | 文件源码
def __init__(self):
    super(ResNet,self).__init__()
    self.features = nn.Sequential(*list(resnet101.children())[:-3])
项目:PytorchDL    作者:FredHuangBia    | 项目源码 | 文件源码
def __init__(self, opt):
        super().__init__()
        self.opt = opt

        if opt.netSpec == 'resnet101':
            resnet = models.resnet101(pretrained=opt.pretrain)
        elif opt.netSpec == 'resnet50':
            resnet = models.resnet50(pretrained=opt.pretrain)
        elif opt.netSpec == 'resnet34':
            resnet = models.resnet34(pretrained=opt.pretrain)

        self.conv1 = resnet.conv1
        self.layer1 = resnet.layer1
        self.layer2 = resnet.layer2
        self.layer3 = resnet.layer3
        self.layer4 = resnet.layer4

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # m.stride = 1
                m.requires_grad = False
            if isinstance(m, nn.BatchNorm2d):
                m.requires_grad = False

        self.layer5a = PSPDec(512, 128, (1,1))
        self.layer5b = PSPDec(512, 128, (2,2))
        self.layer5c = PSPDec(512, 128, (3,3))
        self.layer5d = PSPDec(512, 128, (6,6))

        self.final = nn.Sequential(
            nn.Conv2d(512*2, 512, 3, padding=1, bias=False),
            nn.BatchNorm2d(512, momentum=.95),
            nn.ReLU(inplace=True),
            nn.Dropout(.1),
            nn.Conv2d(512, opt.numClasses, 1),
        )
项目:pretrained-models.pytorch    作者:Cadene    | 项目源码 | 文件源码
def resnet101(num_classes=1000, pretrained='imagenet'):
    """Constructs a ResNet-101 model.
    """
    model = models.resnet101(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['resnet101'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_resnets(model)
    return model
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def load_pretrained_model(faster_rcnn_model, model_name='vgg16'):
    if model_name == 'vgg16':
        model = models.vgg16(pretrained=True)
        faster_rcnn_model.rpn.features = model.features
        mod = list(model.classifier.children())[:-1]
        faster_rcnn_model.fcs = nn.Sequential(*mod)
    elif model_name == 'resnet101':
        model = models.resnet101(pretrained=True)
        faster_rcnn_model.rpn.features = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool,
                                                       model.layer1, model.layer2, model.layer3, model.layer4,
                                                       model.avgpool)
        faster_rcnn_model.fcs = model.fc
项目:pytorch-semantic-segmentation    作者:ZijunDeng    | 项目源码 | 文件源码
def __init__(self, num_classes, input_size, pretrained=True, use_aux=True):
        super(PSPNetDeform, self).__init__()
        self.input_size = input_size
        self.use_aux = use_aux
        resnet = models.resnet101()
        if pretrained:
            resnet.load_state_dict(torch.load(res101_path))
        self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
        self.layer1 = resnet.layer1
        self.layer2 = resnet.layer2
        self.layer3 = resnet.layer3
        self.layer4 = resnet.layer4

        for n, m in self.layer3.named_modules():
            if 'conv2' in n:
                m.padding = (1, 1)
                m.stride = (1, 1)
            elif 'downsample.0' in n:
                m.stride = (1, 1)
        for n, m in self.layer4.named_modules():
            if 'conv2' in n:
                m.padding = (1, 1)
                m.stride = (1, 1)
            elif 'downsample.0' in n:
                m.stride = (1, 1)
        for idx in range(len(self.layer3)):
            self.layer3[idx].conv2 = Conv2dDeformable(self.layer3[idx].conv2)
        for idx in range(len(self.layer4)):
            self.layer4[idx].conv2 = Conv2dDeformable(self.layer4[idx].conv2)

        self.ppm = _PyramidPoolingModule(2048, 512, (1, 2, 3, 6))
        self.final = nn.Sequential(
            nn.Conv2d(4096, 512, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(512, momentum=.95),
            nn.ReLU(inplace=True),
            nn.Dropout(0.1),
            nn.Conv2d(512, num_classes, kernel_size=1)
        )

        if use_aux:
            self.aux_logits = nn.Conv2d(1024, num_classes, kernel_size=1)
            initialize_weights(self.aux_logits)

        initialize_weights(self.ppm, self.final)