Python torch.nn 模块,Dropout2d() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用torch.nn.Dropout2d()

项目:cat-bbs    作者:aleju    | 项目源码 | 文件源码
def __init__(self):
        super(Model2, self).__init__()

        # fine tuning the ResNet helped significantly with the accuracy
        base_model = MyResNet(BasicBlock, [2, 2, 2, 2])
        base_model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
        # code needed to deactivate fine tuning of resnet
        #for param in base_model.parameters():
        #    param.requires_grad = False
        self.base_model = base_model
        self.drop0 = nn.Dropout2d(0.05)

        self.conv1 = nn.Conv2d(512, 256, 3, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(256)
        self.drop1 = nn.Dropout2d(0.05)

        self.conv2 = nn.Conv2d(256, 128, 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(128)
        self.drop2 = nn.Dropout2d(0.05)

        self.conv3 = nn.Conv2d(128, 1+9, 3, padding=1, bias=False)
项目:pytorch-arda    作者:corenel    | 项目源码 | 文件源码
def __init__(self):
        """Init LeNet encoder."""
        super(Generator, self).__init__()

        self.restored = False

        self.encoder = nn.Sequential(
            # 1st conv block
            # input [1 x 28 x 28]
            # output [64 x 12 x 12]
            nn.Conv2d(1, 64, 5, 1, 0, bias=False),
            nn.MaxPool2d(2),
            nn.ReLU(),
            # 2nd conv block
            # input [64 x 12 x 12]
            # output [50 x 4 x 4]
            nn.Conv2d(64, 50, 5, 1, 0, bias=False),
            nn.Dropout2d(),
            nn.MaxPool2d(2),
            nn.ReLU()
        )
        self.fc1 = nn.Linear(50 * 4 * 4, 500)
项目:pytorch-adda    作者:corenel    | 项目源码 | 文件源码
def __init__(self):
        """Init LeNet encoder."""
        super(LeNetEncoder, self).__init__()

        self.restored = False

        self.encoder = nn.Sequential(
            # 1st conv layer
            # input [1 x 28 x 28]
            # output [20 x 12 x 12]
            nn.Conv2d(1, 20, kernel_size=5),
            nn.MaxPool2d(kernel_size=2),
            nn.ReLU(),
            # 2nd conv layer
            # input [20 x 12 x 12]
            # output [50 x 4 x 4]
            nn.Conv2d(20, 50, kernel_size=5),
            nn.Dropout2d(),
            nn.MaxPool2d(kernel_size=2),
            nn.ReLU()
        )
        self.fc1 = nn.Linear(50 * 4 * 4, 500)
项目:NeuroNLP2    作者:XuezheMax    | 项目源码 | 文件源码
def __init__(self, word_dim, num_words, char_dim, num_chars, num_filters, kernel_size,
                 rnn_mode, hidden_size, num_layers, num_labels, tag_space=0,
                 embedd_word=None, embedd_char=None, p_in=0.2, p_rnn=0.5):
        super(BiVarRecurrentConv, self).__init__(word_dim, num_words, char_dim, num_chars, num_filters, kernel_size,
                                                 rnn_mode, hidden_size, num_layers, num_labels, tag_space=tag_space,
                                                 embedd_word=embedd_word, embedd_char=embedd_char,
                                                 p_in=p_in, p_rnn=p_rnn)

        self.dropout_in = None
        self.dropout_rnn = nn.Dropout2d(p_rnn)

        if rnn_mode == 'RNN':
            RNN = VarMaskedRNN
        elif rnn_mode == 'LSTM':
            RNN = VarMaskedLSTM
        elif rnn_mode == 'GRU':
            RNN = VarMaskedGRU
        else:
            raise ValueError('Unknown RNN mode: %s' % rnn_mode)

        self.rnn = RNN(word_dim + num_filters, hidden_size, num_layers=num_layers,
                       batch_first=True, bidirectional=True, dropout=(p_in, p_rnn))
项目:PytorchDL    作者:FredHuangBia    | 项目源码 | 文件源码
def __init__(self, internal_scale=None, use_relu=None, asymmetric=None, dilated=None, input_channels=None, output_channels=None, downsample=None, dropout_prob=None):
        super().__init__()

        internal_channels = output_channels // internal_scale
        input_stride = downsample and 2 or 1

        self.__dict__.update(locals())
        del self.self

        self.input_conv = nn.Conv2d(input_channels, internal_channels, input_stride, stride=input_stride, padding=0, bias=False)
        self.input_batch_norm = nn.BatchNorm2d(internal_channels, eps=1e-03)

        if asymmetric == True:
            self.middle_conv = nn.Conv2d( internal_channels, internal_channels, (5,1), stride=1, padding=(2,0), bias=True, dilation=1)
            self.middle_batch_norm = nn.BatchNorm2d(internal_channels, eps=1e-03)
            self.middle_conv = nn.Conv2d( internal_channels, internal_channels, (1,5), stride=1, padding=(0,2), bias=True, dilation=1)
            self.middle_batch_norm = nn.BatchNorm2d(internal_channels, eps=1e-03)
        else:
            self.middle_conv = nn.Conv2d( internal_channels, internal_channels, 3, stride=1, padding=dilated, bias=True, dilation=dilated)
            self.middle_batch_norm = nn.BatchNorm2d(internal_channels, eps=1e-03)

        self.output_conv = nn.Conv2d(internal_channels, output_channels, 1, stride=1, padding=0, bias=False)
        self.output_batch_norm = nn.BatchNorm2d(output_channels, eps=1e-03)
        self.dropout = nn.Dropout2d(dropout_prob)
项目:pytorch-fcn    作者:wkentaro    | 项目源码 | 文件源码
def get_parameters(model, bias=False):
    import torch.nn as nn
    modules_skipped = (
        nn.ReLU,
        nn.MaxPool2d,
        nn.Dropout2d,
        nn.Sequential,
        torchfcn.models.FCN32s,
        torchfcn.models.FCN16s,
        torchfcn.models.FCN8s,
    )
    for m in model.modules():
        if isinstance(m, nn.Conv2d):
            if bias:
                yield m.bias
            else:
                yield m.weight
        elif isinstance(m, nn.ConvTranspose2d):
            # weight is frozen because it is just a bilinear upsampling
            if bias:
                assert m.bias is None
        elif isinstance(m, modules_skipped):
            continue
        else:
            raise ValueError('Unexpected module: %s' % str(m))
项目:pytorch_tutorial    作者:soravux    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:pytorch_tutorial    作者:soravux    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:pytorch_tutorial    作者:soravux    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:pytorch_tutorial    作者:soravux    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:pytorch_tutorial    作者:soravux    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:future-price-predictor    作者:htfy96    | 项目源码 | 文件源码
def __init__(self, block, layers, num_classes=2):
        super(cnnAlpha, self).__init__()
        self.in_channels = 8
        self.conv = conv3x3(1, 8)
        self.bn = nn.BatchNorm2d(8)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[1])
        self.layer3 = self.make_layer(block, 16, layers[2])
        self.conv2 = conv3x3(16, 8)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(288, num_classes)
        self.softmax = nn.Softmax()
        self.dropout = nn.Dropout2d(p=0.2)
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def test_Dropout2d(self):
        b = random.randint(1, 5)
        w = random.randint(1, 5)
        h = random.randint(1, 5)
        num_features = 1000
        input = torch.Tensor(num_features, b, w, h)
        self._test_dropout(nn.Dropout2d, input)
项目:KagglePlanetPytorch    作者:Mctigger    | 项目源码 | 文件源码
def __init__(self, in_channels, channels, kernel_size=3, padding=1, dropout=None):
        super(PreActivationBlock, self).__init__()
        self.bn = nn.BatchNorm2d(in_channels)
        self.conv = nn.Conv2d(in_channels, channels, kernel_size=kernel_size, stride=1, padding=padding, bias=False)
        self.dropout = dropout
        if dropout is not None:
            self.drop = nn.Dropout2d(p=dropout)
项目:dockerfiles    作者:floydhub    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:tensorboard-pytorch    作者:lanpa    | 项目源码 | 文件源码
def __init__(self):
        super(Mnist, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
        self.bn = nn.BatchNorm2d(20)
项目:tensorboard-pytorch    作者:lanpa    | 项目源码 | 文件源码
def __init__(self):
        super(Mnist, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
        self.bn = nn.BatchNorm2d(20)
项目:tensorboard-pytorch    作者:lanpa    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:carvana-challenge    作者:chplushsieh    | 项目源码 | 文件源码
def __init__(self, n_channels=3, n_classes=1, dropout=0.0, bn=1, activation='relu'):
        super().__init__()

        self.n_channels = n_channels
        self.n_classes  = n_classes
        self.bn = bn
        self.activation = activation
        self.dropout = dropout

        if dropout:
            self.dropout2d = nn.Dropout2d(p=dropout)
        else:
            self.dropout2d = lambda x: x
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_Dropout2d(self):
        b = random.randint(1, 5)
        w = random.randint(1, 5)
        h = random.randint(1, 5)
        num_features = 1000
        input = torch.Tensor(num_features, b, w, h)
        self._test_dropout(nn.Dropout2d, input)
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_invalid_dropout_p(self):
        v = Variable(torch.ones(1))
        self.assertRaises(ValueError, lambda: nn.Dropout(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, -0.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, 1.1))
项目:covfefe    作者:deepnn    | 项目源码 | 文件源码
def dropout(p=0.5, inplace=False, dim=2):

    #TODO: in the future some preprocessing goes here
    in_dim = dim
    if in_dim == 1:
        return nn.Dropout(p=p, inplace=inplace)

    elif in_dim == 2:
        return nn.Dropout2d(p=p, inplace=inplace)

    elif in_dim == 3:
        return nn.Dropout3d(p=p, inplace=inplace)

# convolutional
# Regular convolution
项目:ml-utils    作者:LinxiFan    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:studio    作者:studioml    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_Dropout2d(self):
        b = random.randint(1, 5)
        w = random.randint(1, 5)
        h = random.randint(1, 5)
        num_features = 1000
        input = torch.Tensor(num_features, b, w, h)
        self._test_dropout(nn.Dropout2d, input)
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_invalid_dropout_p(self):
        v = Variable(torch.ones(1))
        self.assertRaises(ValueError, lambda: nn.Dropout(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, -0.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, 1.1))
项目:kaggle-dstl    作者:lopuhin    | 项目源码 | 文件源码
def __init__(self, hps: HyperParams):
        super().__init__()
        self.hps = hps
        if hps.dropout:
            self.dropout2d = nn.Dropout2d(p=hps.dropout)
        else:
            self.dropout2d = lambda x: x
        self.register_buffer('global_step', torch.IntTensor(1).zero_())
项目:kaggle-dstl    作者:lopuhin    | 项目源码 | 文件源码
def __init__(self, in_, out, *, dropout, bn):
        super().__init__()
        self.bn = nn.BatchNorm2d(in_) if bn else None
        self.activation = nn.ReLU(inplace=True)
        self.conv = conv3x3(in_, out)
        self.dropout = nn.Dropout2d(p=dropout) if dropout else None
项目:kaggle-dstl    作者:lopuhin    | 项目源码 | 文件源码
def __init__(self, in_, out, scale, *, dropout, bn):
        super().__init__()
        self.in_ = in_
        self.bn = nn.BatchNorm2d(in_) if bn else None
        self.activation = nn.ReLU(inplace=True)
        self.conv = nn.Conv2d(in_, out, 1)
        self.dropout = nn.Dropout2d(p=dropout) if dropout else None
        self.pool = nn.MaxPool2d(scale, scale)
项目:imSitu    作者:my89    | 项目源码 | 文件源码
def __init__(self):
    super(resnet_modified_large, self).__init__()
    self.resnet = tv.models.resnet101(pretrained=True)
    #probably want linear, relu, dropout
    self.linear = nn.Linear(7*7*2048, 1024)
    self.dropout2d = nn.Dropout2d(.5)
    self.dropout = nn.Dropout(.5)
    self.relu = nn.LeakyReLU()
    initLinear(self.linear)
项目:imSitu    作者:my89    | 项目源码 | 文件源码
def __init__(self):
    super(resnet_modified_medium, self).__init__()
    self.resnet = tv.models.resnet50(pretrained=True)
    #probably want linear, relu, dropout
    self.linear = nn.Linear(7*7*2048, 1024)
    self.dropout2d = nn.Dropout2d(.5)
    self.dropout = nn.Dropout(.5)
    self.relu = nn.LeakyReLU()
    initLinear(self.linear)
项目:imSitu    作者:my89    | 项目源码 | 文件源码
def __init__(self):
    super(resnet_modified_small, self).__init__()
    self.resnet = tv.models.resnet34(pretrained=True)
    #probably want linear, relu, dropout
    self.linear = nn.Linear(7*7*512, 1024)
    self.dropout2d = nn.Dropout2d(.5)
    self.dropout = nn.Dropout(.5)
    self.relu = nn.LeakyReLU()
    initLinear(self.linear)
项目:self-driving-truck    作者:aleju    | 项目源码 | 文件源码
def __init__(self):
        super(Embedder, self).__init__()

        def identity(v):
            return lambda x: x
        bn2d = nn.InstanceNorm2d
        bn1d = identity

        self.nb_previous_images = 2

        self.emb_sup_c1    = nn.Conv2d(512, 1024, kernel_size=3, padding=0, stride=1)
        self.emb_sup_c1_bn = bn2d(1024)
        self.emb_sup_c1_sd = nn.Dropout2d(0.0)

        self.emb_add_fc1 = nn.Linear(
            (self.nb_previous_images+1) # speeds
            + (self.nb_previous_images+1) # is_reverse
            + (self.nb_previous_images+1) # steering wheel
            + (self.nb_previous_images+1) # steering wheel raw
            + self.nb_previous_images*9,
            128
        )
        self.emb_add_fc1_bn = bn1d(128)

        self.emb_fc1 = nn.Linear(1024*3 + 128, 512)
        self.emb_fc1_bn = bn1d(512)

        init_weights(self)
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_Dropout2d(self):
        b = random.randint(1, 5)
        w = random.randint(1, 5)
        h = random.randint(1, 5)
        num_features = 1000
        input = torch.Tensor(num_features, b, w, h)
        self._test_dropout(nn.Dropout2d, input)
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_invalid_dropout_p(self):
        v = Variable(torch.ones(1))
        self.assertRaises(ValueError, lambda: nn.Dropout(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, -0.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, 1.1))
项目:cloud-ml-sdk    作者:XiaoMi    | 项目源码 | 文件源码
def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
    self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
    self.conv2_drop = nn.Dropout2d()
    self.fc1 = nn.Linear(320, 50)
    self.fc2 = nn.Linear(50, 10)
项目:NeuroNLP2    作者:XuezheMax    | 项目源码 | 文件源码
def __init__(self, word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, kernel_size,
                 rnn_mode, hidden_size, num_layers, num_labels, arc_space, type_space,
                 embedd_word=None, embedd_char=None, embedd_pos=None,
                 p_in=0.2, p_out=0.5, p_rnn=(0.5, 0.5), biaffine=True):
        super(BiRecurrentConvBiAffine, self).__init__()

        self.word_embedd = Embedding(num_words, word_dim, init_embedding=embedd_word)
        self.char_embedd = Embedding(num_chars, char_dim, init_embedding=embedd_char)
        self.pos_embedd = Embedding(num_pos, pos_dim, init_embedding=embedd_pos)
        self.conv1d = nn.Conv1d(char_dim, num_filters, kernel_size, padding=kernel_size - 1)
        self.dropout_in = nn.Dropout2d(p=p_in)
        self.dropout_out = nn.Dropout2d(p=p_out)
        self.num_labels = num_labels

        if rnn_mode == 'RNN':
            RNN = VarMaskedRNN
        elif rnn_mode == 'LSTM':
            RNN = VarMaskedLSTM
        elif rnn_mode == 'FastLSTM':
            RNN = VarMaskedFastLSTM
        elif rnn_mode == 'GRU':
            RNN = VarMaskedGRU
        else:
            raise ValueError('Unknown RNN mode: %s' % rnn_mode)

        self.rnn = RNN(word_dim + num_filters + pos_dim, hidden_size, num_layers=num_layers,
                       batch_first=True, bidirectional=True, dropout=p_rnn)

        out_dim = hidden_size * 2
        self.arc_h = nn.Linear(out_dim, arc_space)
        self.arc_c = nn.Linear(out_dim, arc_space)
        self.attention = BiAAttention(arc_space, arc_space, 1, biaffine=biaffine)

        self.type_h = nn.Linear(out_dim, type_space)
        self.type_c = nn.Linear(out_dim, type_space)
        self.bilinear = BiLinear(type_space, type_space, self.num_labels)
        self.logsoftmax = nn.LogSoftmax()
项目:pix2pix.pytorch    作者:taey16    | 项目源码 | 文件源码
def blockUNet(in_c, out_c, name, transposed=False, bn=True, relu=True, dropout=False):
  block = nn.Sequential()
  if relu:
    block.add_module('%s.relu' % name, nn.ReLU(inplace=True))
  else:
    block.add_module('%s.leakyrelu' % name, nn.LeakyReLU(0.2, inplace=True))
  if not transposed:
    block.add_module('%s.conv' % name, nn.Conv2d(in_c, out_c, 4, 2, 1, bias=False))
  else:
    block.add_module('%s.tconv' % name, nn.ConvTranspose2d(in_c, out_c, 4, 2, 1, bias=False))
  if bn:
    block.add_module('%s.bn' % name, nn.BatchNorm2d(out_c))
  if dropout:
    block.add_module('%s.dropout' % name, nn.Dropout2d(0.5, inplace=True))
  return block
项目:teras    作者:chantera    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:examples    作者:pytorch    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:examples    作者:pytorch    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_Dropout2d(self):
        b = random.randint(1, 5)
        w = random.randint(1, 5)
        h = random.randint(1, 5)
        num_features = 1000
        input = torch.Tensor(num_features, b, w, h)
        self._test_dropout(nn.Dropout2d, input)
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_invalid_dropout_p(self):
        v = Variable(torch.ones(1))
        self.assertRaises(ValueError, lambda: nn.Dropout(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1))
        self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, -0.1))
        self.assertRaises(ValueError, lambda: F.dropout(v, 1.1))
项目:derplearning    作者:John-Ellis    | 项目源码 | 文件源码
def __init__(self, dim, n_out, kernel_size=3, stride=1,
                 padding=None, batchnorm=True,
                 activation=True, pool=None,
                 dropout=0.0, verbose=False):
        super(ConvBlock, self).__init__()

        if padding is None:
            padding = kernel_size // 2

        n_in = int(dim[0])
        self.conv2d = nn.Conv2d(n_in, n_out, kernel_size=kernel_size,
                                stride=stride, padding=padding)
        self.batchnorm = nn.BatchNorm2d(n_out) if batchnorm else None
        self.activation = nn.ReLU(inplace=True) if activation else None
        self.dropout = nn.Dropout2d(dropout) if dropout > 0.0 else None

        # Output dimensions just from convolution
        dim[0] = n_out
        dim[1:] = 1 + np.floor((dim[1:] + padding * 2 - kernel_size) / stride)

        # Add a pooling block, which might further change dim
        self.pool = pool if pool is None else PoolBlock(dim, pool, 2, verbose=verbose)

        # Number of params
        self.n_params = n_out * (n_in * kernel_size * kernel_size + (3 if batchnorm else 1))

        if verbose:
            print("Conv2d in %3i out %3i h %3i w %3i k %i s %i params %9i" %
                  (n_in, *dim, kernel_size, stride, self.n_params))
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
        self.dropout = nn.Dropout2d()
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(MyBasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.dropout = nn.Dropout2d()
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(MyBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.dropout = nn.Dropout2d()
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
项目:tutorials    作者:pytorch    | 项目源码 | 文件源码
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

        # Spatial transformer localization-network
        self.localization = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True)
        )

        # Regressor for the 3 * 2 affine matrix
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )

        # Initialize the weights/bias with identity transformation
        self.fc_loc[2].weight.data.fill_(0)
        self.fc_loc[2].bias.data = torch.FloatTensor([1, 0, 0, 0, 1, 0])

    # Spatial transformer network forward function
项目:DomainTransferNetwork.pytorch    作者:taey16    | 项目源码 | 文件源码
def blockUNet(in_c, out_c, name, transposed=False, bn=True, relu=True, dropout=False):
  block = nn.Sequential()
  if relu:
    block.add_module('%s.relu' % name, nn.ReLU(inplace=True))
  else:
    block.add_module('%s.leakyrelu' % name, nn.LeakyReLU(0.2, inplace=True))
  if not transposed:
    block.add_module('%s.conv' % name, nn.Conv2d(in_c, out_c, 4, 2, 1, bias=False))
  else:
    block.add_module('%s.tconv' % name, nn.ConvTranspose2d(in_c, out_c, 4, 2, 1, bias=False))
  if bn:
    block.add_module('%s.bn' % name, nn.BatchNorm2d(out_c))
  if dropout:
    block.add_module('%s.dropout' % name, nn.Dropout2d(0.5, inplace=True))
  return block
项目:pytorch-semseg    作者:meetshah1995    | 项目源码 | 文件源码
def __init__(self, n_classes=21, learned_billinear=False):
        super(fcn32s, self).__init__()
        self.learned_billinear = learned_billinear
        self.n_classes = n_classes

        self.conv_block1 = nn.Sequential(
            nn.Conv2d(3, 64, 3, padding=100),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, stride=2, ceil_mode=True),)

        self.conv_block2 = nn.Sequential(
            nn.Conv2d(64, 128, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, stride=2, ceil_mode=True),)

        self.conv_block3 = nn.Sequential(
            nn.Conv2d(128, 256, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, stride=2, ceil_mode=True),)

        self.conv_block4 = nn.Sequential(
            nn.Conv2d(256, 512, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, stride=2, ceil_mode=True),)

        self.conv_block5 = nn.Sequential(
            nn.Conv2d(512, 512, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, stride=2, ceil_mode=True),)

        self.classifier = nn.Sequential(
            nn.Conv2d(512, 4096, 7),
            nn.ReLU(inplace=True),
            nn.Dropout2d(),
            nn.Conv2d(4096, 4096, 1),
            nn.ReLU(inplace=True),
            nn.Dropout2d(),
            nn.Conv2d(4096, self.n_classes, 1),)

        # TODO: Add support for learned upsampling
        if self.learned_billinear:
            raise NotImplementedError
            # upscore = nn.ConvTranspose2d(self.n_classes, self.n_classes, 64, stride=32, bias=False)
            # upscore.scale_factor = None